Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 563(7733): 719-723, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30464341

RESUMEN

It is now well established that tumours undergo changes in cellular metabolism1. As this can reveal tumour cell vulnerabilities and because many tumours exhibit enhanced glucose uptake2, we have been interested in how tumour cells respond to different forms of sugar. Here we report that the monosaccharide mannose causes growth retardation in several tumour types in vitro, and enhances cell death in response to major forms of chemotherapy. We then show that these effects also occur in vivo in mice following the oral administration of mannose, without significantly affecting the weight and health of the animals. Mechanistically, mannose is taken up by the same transporter(s) as glucose3 but accumulates as mannose-6-phosphate in cells, and this impairs the further metabolism of glucose in glycolysis, the tricarboxylic acid cycle, the pentose phosphate pathway and glycan synthesis. As a result, the administration of mannose in combination with conventional chemotherapy affects levels of anti-apoptotic proteins of the Bcl-2 family, leading to sensitization to cell death. Finally we show that susceptibility to mannose is dependent on the levels of phosphomannose isomerase (PMI). Cells with low levels of PMI are sensitive to mannose, whereas cells with high levels are resistant, but can be made sensitive by RNA-interference-mediated depletion of the enzyme. In addition, we use tissue microarrays to show that PMI levels also vary greatly between different patients and different tumour types, indicating that PMI levels could be used as a biomarker to direct the successful administration of mannose. We consider that the administration of mannose could be a simple, safe and selective therapy in the treatment of cancer, and could be applicable to multiple tumour types.


Asunto(s)
Antineoplásicos/farmacología , Antineoplásicos/uso terapéutico , Manosa/metabolismo , Manosa/farmacología , Neoplasias/tratamiento farmacológico , Neoplasias/metabolismo , Administración Oral , Animales , Apoptosis/efectos de los fármacos , Biomarcadores de Tumor/metabolismo , Peso Corporal/efectos de los fármacos , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Sinergismo Farmacológico , Femenino , Glucosa/metabolismo , Glucólisis/efectos de los fármacos , Humanos , Manosa/administración & dosificación , Manosa/uso terapéutico , Manosa-6-Fosfato Isomerasa/deficiencia , Manosa-6-Fosfato Isomerasa/genética , Manosa-6-Fosfato Isomerasa/metabolismo , Manosafosfatos/metabolismo , Ratones , Ratones Endogámicos C57BL , Ratones Desnudos , Proteína 1 de la Secuencia de Leucemia de Células Mieloides/metabolismo , Neoplasias/clasificación , Neoplasias/patología , Interferencia de ARN , Proteína bcl-X/metabolismo
3.
Nature ; 544(7650): 372-376, 2017 04 19.
Artículo en Inglés | MEDLINE | ID: mdl-28425994

RESUMEN

The non-essential amino acids serine and glycine are used in multiple anabolic processes that support cancer cell growth and proliferation (reviewed in ref. 1). While some cancer cells upregulate de novo serine synthesis, many others rely on exogenous serine for optimal growth. Restriction of dietary serine and glycine can reduce tumour growth in xenograft and allograft models. Here we show that this observation translates into more clinically relevant autochthonous tumours in genetically engineered mouse models of intestinal cancer (driven by Apc inactivation) or lymphoma (driven by Myc activation). The increased survival following dietary restriction of serine and glycine in these models was further improved by antagonizing the anti-oxidant response. Disruption of mitochondrial oxidative phosphorylation (using biguanides) led to a complex response that could improve or impede the anti-tumour effect of serine and glycine starvation. Notably, Kras-driven mouse models of pancreatic and intestinal cancers were less responsive to depletion of serine and glycine, reflecting an ability of activated Kras to increase the expression of enzymes that are part of the serine synthesis pathway and thus promote de novo serine synthesis.


Asunto(s)
Glicina/deficiencia , Neoplasias Intestinales/dietoterapia , Neoplasias Intestinales/metabolismo , Linfoma/dietoterapia , Linfoma/metabolismo , Serina/deficiencia , Animales , Antioxidantes/metabolismo , Biguanidas/farmacología , Línea Celular Tumoral , Dieta , Modelos Animales de Enfermedad , Femenino , Privación de Alimentos , Glicina/metabolismo , Humanos , Neoplasias Intestinales/genética , Neoplasias Intestinales/patología , Linfoma/patología , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Estado Nutricional , Fosforilación Oxidativa/efectos de los fármacos , Neoplasias Pancreáticas/dietoterapia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/metabolismo , Proteínas Proto-Oncogénicas p21(ras)/genética , Serina/biosíntesis , Serina/metabolismo , Serina/farmacología , Tasa de Supervivencia
4.
Support Care Cancer ; 31(7): 441, 2023 Jul 04.
Artículo en Inglés | MEDLINE | ID: mdl-37402039

RESUMEN

PURPOSE: To qualitatively explore Australian healthcare professionals' perspectives on how to improve the care and management of cancer-related financial toxicity, including relevant practices, services, and unmet needs. METHODS: We invited healthcare professionals (HCP) who currently provide care to people with cancer within their role to complete an online survey, which was distributed via the networks of Australian clinical oncology professional associations/organisations. The survey was developed by the Clinical Oncology Society of Australia's Financial Toxicity Working Group and contained 12 open-ended items which we analysed using descriptive content analysis and NVivo software. RESULTS: HCPs (n = 277) believed that identifying and addressing financial concerns within routine cancer care was important and most believed this to be the responsibility of all HCP involved in the patient's care. However, financial toxicity was viewed as a "blind spot" within a medical model of healthcare, with a lack of services, resources, and training identified as barriers to care. Social workers reported assessment and advocacy were part of their role, but many reported lacking formal training and understanding of financial complexities/laws. HCPs reported positive attitudes towards transparent discussions of costs and actioning cost-reduction strategies within their control, but feelings of helplessness when they perceived no solution was available. CONCLUSION: Identifying financial needs and providing transparent information about cancer-related costs was viewed as a cross-disciplinary responsibility, however, a lack of training and services limited the provision of support. Increased cancer-specific financial counselling and advocacy, via dedicated roles or developing HCPs' skills, is urgently needed within the healthcare system.


Asunto(s)
Estrés Financiero , Neoplasias , Humanos , Australia , Personal de Salud/educación , Neoplasias/terapia , Oncología Médica/educación
5.
Support Care Cancer ; 30(5): 3805-3815, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35031828

RESUMEN

PURPOSE: The aim of this study was to establish research and infrastructure priorities for cancer survivorship. METHODS: A two-round modified online Delphi study was completed by Australian experts in cancer survivorship. Initial priorities were generated from the literature and organized into four research categories: physiological outcomes, psychosocial outcomes, population groups, and health services; and one research infrastructure category. In round 1 (R1), panelists ranked the importance of 77 items on a five-point scale (not at all important to very important). In round 2 (R2), panelists ranked their top 5 priorities within each category. Panelists also specified the type of research needed, such as biological, exploratory, intervention development, or implementation, for the items within each research category. RESULTS: Response rates were 76% (63/82) and 82% (68/82) respectively. After R1, 12 items were added, and 16 items combined or reworded. In R2, the highest prioritized research topics and the preferred type of research in each category were: biological research in cancer progression and recurrence; implementation and dissemination research for fear of recurrence; exploratory research for rare cancer types; and implementation research for quality of care topics. Data availability was listed as the most important priority for research infrastructure. CONCLUSIONS: This study has defined priorities that can be used to support coordinated action between researchers, funding bodies, and other key stakeholders. Designing future research which addresses these priorities will expand our ability to meet survivors' diverse needs and lead to improved outcomes.


Asunto(s)
Supervivientes de Cáncer , Neoplasias , Australia , Técnica Delphi , Humanos , Neoplasias/terapia , Proyectos de Investigación , Encuestas y Cuestionarios
6.
Mol Cell ; 50(3): 394-406, 2013 May 09.
Artículo en Inglés | MEDLINE | ID: mdl-23603120

RESUMEN

Tumor cells undergo changes in metabolism to meet their energetic and anabolic needs. It is conceivable that mechanisms exist to sense these changes and link them to pathways that eradicate cells primed for cancer development. We report that the tumor suppressor p53 activates a cell death priming mechanism that senses extracellular adenosine. Adenosine, the backbone of ATP, accumulates under conditions of cellular stress or altered metabolism. We show that its receptor, A2B, is upregulated by p53. A2B expression has little effect on cell viability, but ligand engagement activates a caspase- and Puma-dependent apoptotic response involving downregulation of antiapoptotic Bcl-2 proteins. Stimulation of A2B also significantly enhances cell death mediated by p53 and upon accumulation of endogenous adenosine following chemotherapeutic drug treatment and exposure to hypoxia. Since extracellular adenosine also accumulates within many solid tumors, this distinct p53 function links programmed cell death to both a cancer- and therapy-associated metabolic change.


Asunto(s)
Adenosina/genética , Adenosina/metabolismo , Proteína p53 Supresora de Tumor/genética , Proteína p53 Supresora de Tumor/metabolismo , Animales , Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/genética , Proteínas Reguladoras de la Apoptosis/metabolismo , Caspasas/genética , Caspasas/metabolismo , Muerte Celular/genética , Línea Celular Tumoral , Supervivencia Celular/genética , Regulación hacia Abajo/genética , Células HCT116 , Humanos , Hipoxia/genética , Hipoxia/metabolismo , Ratones , Ratones Endogámicos C57BL , Proteínas Proto-Oncogénicas c-bcl-2/genética , Proteínas Proto-Oncogénicas c-bcl-2/metabolismo , Receptor de Adenosina A2B/genética , Receptor de Adenosina A2B/metabolismo , Regulación hacia Arriba/genética
7.
J Cell Sci ; 130(20): 3455-3466, 2017 Oct 15.
Artículo en Inglés | MEDLINE | ID: mdl-28871044

RESUMEN

Melanoma cells steer out of tumours using self-generated lysophosphatidic acid (LPA) gradients. The cells break down LPA, which is present at high levels around the tumours, creating a dynamic gradient that is low in the tumour and high outside. They then migrate up this gradient, creating a complex and evolving outward chemotactic stimulus. Here, we introduce a new assay for self-generated chemotaxis, and show that raising LPA levels causes a delay in migration rather than loss of chemotactic efficiency. Knockdown of the lipid phosphatase LPP3 - but not of its homologues LPP1 or LPP2 - diminishes the cell's ability to break down LPA. This is specific for chemotactically active LPAs, such as the 18:1 and 20:4 species. Inhibition of autotaxin-mediated LPA production does not diminish outward chemotaxis, but loss of LPP3-mediated LPA breakdown blocks it. Similarly, in both 2D and 3D invasion assays, knockdown of LPP3 diminishes the ability of melanoma cells to invade. Our results demonstrate that LPP3 is the key enzyme in the breakdown of LPA by melanoma cells, and confirm the importance of attractant breakdown in LPA-mediated cell steering.This article has an associated First Person interview with the first author of the paper.


Asunto(s)
Lisofosfolípidos/metabolismo , Melanoma/metabolismo , Fosfatidato Fosfatasa/fisiología , Neoplasias Cutáneas/metabolismo , Línea Celular Tumoral , Quimiotaxis , Humanos , Melanoma/patología , Invasividad Neoplásica , Neoplasias Cutáneas/patología
8.
PLoS Biol ; 14(3): e1002404, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26981861

RESUMEN

Chemotaxis is fundamentally important, but the sources of gradients in vivo are rarely well understood. Here, we analyse self-generated chemotaxis, in which cells respond to gradients they have made themselves by breaking down globally available attractants, using both computational simulations and experiments. We show that chemoattractant degradation creates steep local gradients. This leads to surprising results, in particular the existence of a leading population of cells that moves highly directionally, while cells behind this group are undirected. This leading cell population is denser than those following, especially at high attractant concentrations. The local gradient moves with the leading cells as they interact with their surroundings, giving directed movement that is unusually robust and can operate over long distances. Even when gradients are applied from external sources, attractant breakdown greatly changes cells' responses and increases robustness. We also consider alternative mechanisms for directional decision-making and show that they do not predict the features of population migration we observe experimentally. Our findings provide useful diagnostics to allow identification of self-generated gradients and suggest that self-generated chemotaxis is unexpectedly universal in biology and medicine.


Asunto(s)
Factores Quimiotácticos/metabolismo , Quimiotaxis , Movimiento Celular , Dictyostelium
9.
Nature ; 504(7479): 296-300, 2013 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-24305049

RESUMEN

Macroautophagy (hereafter referred to as autophagy) is a process in which organelles termed autophagosomes deliver cytoplasmic constituents to lysosomes for degradation. Autophagy has a major role in cellular homeostasis and has been implicated in various forms of human disease. The role of autophagy in cancer seems to be complex, with reports indicating both pro-tumorigenic and tumour-suppressive roles. Here we show, in a humanized genetically-modified mouse model of pancreatic ductal adenocarcinoma (PDAC), that autophagy's role in tumour development is intrinsically connected to the status of the tumour suppressor p53. Mice with pancreases containing an activated oncogenic allele of Kras (also called Ki-Ras)--the most common mutational event in PDAC--develop a small number of pre-cancerous lesions that stochastically develop into PDAC over time. However, mice also lacking the essential autophagy genes Atg5 or Atg7 accumulate low-grade, pre-malignant pancreatic intraepithelial neoplasia lesions, but progression to high-grade pancreatic intraepithelial neoplasias and PDAC is blocked. In marked contrast, in mice containing oncogenic Kras and lacking p53, loss of autophagy no longer blocks tumour progression, but actually accelerates tumour onset, with metabolic analysis revealing enhanced glucose uptake and enrichment of anabolic pathways, which can fuel tumour growth. These findings provide considerable insight into the role of autophagy in cancer and have important implications for autophagy inhibition in cancer therapy. In this regard, we also show that treatment of mice with the autophagy inhibitor hydroxychloroquine, which is currently being used in several clinical trials, significantly accelerates tumour formation in mice containing oncogenic Kras but lacking p53.


Asunto(s)
Autofagia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/patología , Genes p53/genética , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patología , Proteína p53 Supresora de Tumor/genética , Alelos , Animales , Autofagia/efectos de los fármacos , Autofagia/genética , Proteína 5 Relacionada con la Autofagia , Proteína 7 Relacionada con la Autofagia , Carcinoma Ductal Pancreático/metabolismo , Línea Celular Tumoral , Modelos Animales de Enfermedad , Glucosa/metabolismo , Glucólisis/genética , Humanos , Hidroxicloroquina/farmacología , Metabolómica , Ratones , Ratones de la Cepa 129 , Ratones Endogámicos C57BL , Proteínas Asociadas a Microtúbulos/genética , Proteína Oncogénica p21(ras)/genética , Neoplasias Pancreáticas/metabolismo , Vía de Pentosa Fosfato/genética , Lesiones Precancerosas/genética , Lesiones Precancerosas/metabolismo , Lesiones Precancerosas/patología , Análisis de Supervivencia , Proteína p53 Supresora de Tumor/deficiencia , Proteína p53 Supresora de Tumor/metabolismo
10.
Nature ; 498(7452): 109-12, 2013 Jun 06.
Artículo en Inglés | MEDLINE | ID: mdl-23685455

RESUMEN

In response to tenacious stress signals, such as the unscheduled activation of oncogenes, cells can mobilize tumour suppressor networks to avert the hazard of malignant transformation. A large body of evidence indicates that oncogene-induced senescence (OIS) acts as such a break, withdrawing cells from the proliferative pool almost irreversibly, thus crafting a vital pathophysiological mechanism that protects against cancer. Despite the widespread contribution of OIS to the cessation of tumorigenic expansion in animal models and humans, we have only just begun to define the underlying mechanism and identify key players. Although deregulation of metabolism is intimately linked to the proliferative capacity of cells, and senescent cells are thought to remain metabolically active, little has been investigated in detail about the role of cellular metabolism in OIS. Here we show, by metabolic profiling and functional perturbations, that the mitochondrial gatekeeper pyruvate dehydrogenase (PDH) is a crucial mediator of senescence induced by BRAF(V600E), an oncogene commonly mutated in melanoma and other cancers. BRAF(V600E)-induced senescence was accompanied by simultaneous suppression of the PDH-inhibitory enzyme pyruvate dehydrogenase kinase 1 (PDK1) and induction of the PDH-activating enzyme pyruvate dehydrogenase phosphatase 2 (PDP2). The resulting combined activation of PDH enhanced the use of pyruvate in the tricarboxylic acid cycle, causing increased respiration and redox stress. Abrogation of OIS, a rate-limiting step towards oncogenic transformation, coincided with reversion of these processes. Further supporting a crucial role of PDH in OIS, enforced normalization of either PDK1 or PDP2 expression levels inhibited PDH and abrogated OIS, thereby licensing BRAF(V600E)-driven melanoma development. Finally, depletion of PDK1 eradicated melanoma subpopulations resistant to targeted BRAF inhibition, and caused regression of established melanomas. These results reveal a mechanistic relationship between OIS and a key metabolic signalling axis, which may be exploited therapeutically.


Asunto(s)
Senescencia Celular/genética , Mitocondrias/enzimología , Oncogenes/genética , Complejo Piruvato Deshidrogenasa/metabolismo , Animales , Línea Celular , Ciclo del Ácido Cítrico , Modelos Animales de Enfermedad , Activación Enzimática , Glucólisis , Humanos , Melanoma/tratamiento farmacológico , Melanoma/enzimología , Melanoma/genética , Melanoma/patología , Ratones , Ratones Endogámicos NOD , Ratones SCID , Mitocondrias/metabolismo , Terapia Molecular Dirigida , Fosforilación Oxidativa , Proteínas Serina-Treonina Quinasas/antagonistas & inhibidores , Proteínas Serina-Treonina Quinasas/deficiencia , Proteínas Serina-Treonina Quinasas/metabolismo , Proteínas Proto-Oncogénicas B-raf/genética , Piruvato Deshidrogenasa (Lipoamida)-Fosfatasa/metabolismo , Piruvato Deshidrogenasa Quinasa Acetil-Transferidora , Transducción de Señal
11.
BMC Dev Biol ; 17(1): 8, 2017 06 29.
Artículo en Inglés | MEDLINE | ID: mdl-28662681

RESUMEN

BACKGROUND: The tauGFP reporter fusion protein is produced nearly ubiquitously by the TgTP6.3 transgene in TP6.3 mice and its localisation to microtubules offers some advantages over soluble GFP as a lineage marker. However, TgTP6.3 Tg/Tg homozygotes are not viable and TgTP6.3 Tg/- hemizygotes are smaller than wild-type. TP6.4 mice carry the TgTP6.4 transgene, which was produced with the same construct used to generate TgTP6.3, so we investigated whether TgTP6.4 had any advantages over TgTP6.3. RESULTS: Although TgTP6.4 Tg/Tg homozygotes died before weaning, TgTP6.4 Tg/- hemizygotes were viable and fertile and only males were significantly lighter than wild-type. The TgTP6.4 transgene produced the tauGFP fusion protein by the 2-cell stage and it was widely expressed in adults but tauGFP fluorescence was weak or absent in several tissues, including some neural tissues. The TgTP6.4 transgene expression pattern changed over several years of breeding and mosaic transgene expression became increasingly common in all expressing tissues. This mosaicism was used to visualise clonal lineages in the adrenal cortex of TgTP6.4 Tg/- hemizygotes and these were qualitatively and quantitatively comparable to lineages reported previously for other mosaic transgenic mice, X-inactivation mosaics and chimaeras. Mosaicism occurred less frequently in TP6.3 than TP6.4 mice and was only observed in the corneal epithelium and adrenal cortex. CONCLUSIONS: Mosaic expression makes the TgTP6.4 transgene unsuitable for use as a conventional cell lineage marker but such mosaicism provides a useful system for visualising clonal lineages that arise during development or maintenance of adult tissues. Differences in the occurrence of mosaicism between related transgenic lines, such as that described for lines TP6.3 and TP6.4, might provide a useful system for investigating the mechanism of transgene silencing.


Asunto(s)
Linaje de la Célula , Ratones Transgénicos/genética , Mosaicismo , Transgenes/genética , Proteínas tau/genética , Animales , Expresión Génica , Ratones
12.
Mol Cell Proteomics ; 14(3): 621-34, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25573745

RESUMEN

Endothelial cells (ECs) play a key role to maintain the functionality of blood vessels. Altered EC permeability causes severe impairment in vessel stability and is a hallmark of pathologies such as cancer and thrombosis. Integrating label-free quantitative proteomics data into genome-wide metabolic modeling, we built up a model that predicts the metabolic fluxes in ECs when cultured on a tridimensional matrix and organize into a vascular-like network. We discovered how fatty acid oxidation increases when ECs are assembled into a fully formed network that can be disrupted by inhibiting CPT1A, the fatty acid oxidation rate-limiting enzyme. Acute CPT1A inhibition reduces cellular ATP levels and oxygen consumption, which are restored by replenishing the tricarboxylic acid cycle. Remarkably, global phosphoproteomic changes measured upon acute CPT1A inhibition pinpointed altered calcium signaling. Indeed, CPT1A inhibition increases intracellular calcium oscillations. Finally, inhibiting CPT1A induces hyperpermeability in vitro and leakage of blood vessel in vivo, which were restored blocking calcium influx or replenishing the tricarboxylic acid cycle. Fatty acid oxidation emerges as central regulator of endothelial functions and blood vessel stability and druggable pathway to control pathological vascular permeability.


Asunto(s)
Carnitina O-Palmitoiltransferasa/antagonistas & inhibidores , Células Endoteliales/metabolismo , Ácidos Grasos/metabolismo , Metaboloma , Modelos Biológicos , Proteómica/métodos , Adenosina Trifosfato/metabolismo , Animales , Células Endoteliales/citología , Compuestos Epoxi/farmacología , Células Endoteliales de la Vena Umbilical Humana , Humanos , Técnicas In Vitro , Ratones , Oxidación-Reducción , Consumo de Oxígeno , Permeabilidad
14.
Asia Pac J Clin Oncol ; 19(5): e305-e313, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36658677

RESUMEN

AIM: Response to the substantial and long-term impacts that a cancer diagnosis and treatment has on the growing population of cancer survivors, requires priority-driven, impactful research. This study aimed to map Australian cancer survivorship research activities to identify gaps and opportunities for improvement and compare activities against identified survivorship research priorities. METHODS: An online survey was completed by Australian researchers regarding their cancer survivorship research, and the barriers they identified to conducting such research. Current research activity was compared to recently established Australian survivorship research priorities. RESULTS: Overall, 178 participants completed the online survey. The majority of the research undertaken utilized survey or qualitative designs and focused on breast cancer, adult populations, and those in early survivorship (<5 years post-treatment). Barriers to conducting survivorship research included funding, collaboration and networking, mentoring, and time constraints. There was moderate alignment with existing research priorities. Investigating models of care and health service delivery were the most frequently researched priorities. Research priorities that were less commonly investigated included patient navigation, patient-reported outcomes, multimorbidity, fear of cancer recurrence, and economic issues. CONCLUSION: This study provides the first snapshot of Australian survivorship research activity. Comparison to established priorities demonstrates health services research is receiving attention and highlights areas for potential pursuits, such as rare cancers or multimorbidity. Findings indicate the need for improved funding and infrastructure to support researchers in advancing the survivorship research agenda.


Asunto(s)
Neoplasias de la Mama , Supervivientes de Cáncer , Adulto , Humanos , Femenino , Australia/epidemiología , Recurrencia Local de Neoplasia , Investigación
15.
Asia Pac J Clin Oncol ; 19(1): 126-135, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-35589922

RESUMEN

AIM: To understand the opinions and current practices of health professionals on the topic of addressing cancer-related financial toxicity among patients. METHODS: A cross-sectional online survey was distributed through Australian clinical oncology professional organizations/networks. The multidisciplinary Clinical Oncology Society of Australia Financial Toxicity Working Group developed 25 questions relating to the frequency and comfort levels of patient-clinician discussions, opinions about their role, strategies used, and barriers to providing solutions for patients. Descriptive statistics were used and subgroup analyses were undertaken by occupational groups. RESULTS: Two hundred and seventy-seven health professionals completed the survey. The majority were female (n = 213, 77%), worked in public facilities (200, 72%), and treated patients with varied cancer types across all of Australia. Most participants agreed that it was appropriate in their clinical role to discuss financial concerns and 231 (88%) believed that these discussions were an important part of high-quality care. However, 73 (28%) stated that they did not have the appropriate information on support services or resources to facilitate such conversations, differing by occupation group; 7 (11%) social workers, 34 (44%) medical specialists, 18 (25%) nurses, and 14 (27%) of other occupations. Hindrances to discussing financial concerns were insufficient resources or support systems to refer to, followed by lack of time in a typical consultation. CONCLUSION: Health professionals in cancer care commonly address the financial concerns of their patients but attitudes differed across occupations about their role, and frustrations were raised about available solutions. Resources supporting financial-related discussions for all health professionals are urgently needed to advance action in this field.


Asunto(s)
Personal de Salud , Neoplasias , Humanos , Masculino , Femenino , Australia , Estudios Transversales , Encuestas y Cuestionarios , Neoplasias/terapia
16.
Cancer Res ; 82(14): 2565-2575, 2022 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-35675421

RESUMEN

Prostate cancer is the second most common cause of cancer mortality in men worldwide. Applying a novel genetically engineered mouse model (GEMM) of aggressive prostate cancer driven by deficiency of the tumor suppressors PTEN and Sprouty2 (SPRY2), we identified enhanced creatine metabolism as a central component of progressive disease. Creatine treatment was associated with enhanced cellular basal respiration in vitro and increased tumor cell proliferation in vivo. Stable isotope tracing revealed that intracellular levels of creatine in prostate cancer cells are predominantly dictated by exogenous availability rather than by de novo synthesis from arginine. Genetic silencing of creatine transporter SLC6A8 depleted intracellular creatine levels and reduced the colony-forming capacity of human prostate cancer cells. Accordingly, in vitro treatment of prostate cancer cells with cyclocreatine, a creatine analog, dramatically reduced intracellular levels of creatine and its derivatives phosphocreatine and creatinine and suppressed proliferation. Supplementation with cyclocreatine impaired cancer progression in the PTEN- and SPRY2-deficient prostate cancer GEMMs and in a xenograft liver metastasis model. Collectively, these results identify a metabolic vulnerability in prostate cancer and demonstrate a rational therapeutic strategy to exploit this vulnerability to impede tumor progression. SIGNIFICANCE: Enhanced creatine uptake drives prostate cancer progression and confers a metabolic vulnerability to treatment with the creatine analog cyclocreatine.


Asunto(s)
Creatina , Creatinina , Neoplasias de la Próstata , Animales , Creatina/metabolismo , Creatinina/análogos & derivados , Creatinina/farmacología , Modelos Animales de Enfermedad , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Masculino , Proteínas de la Membrana/metabolismo , Ratones , Fosfocreatina/metabolismo , Neoplasias de la Próstata/tratamiento farmacológico , Neoplasias de la Próstata/metabolismo , Neoplasias de la Próstata/patología
17.
EMBO Mol Med ; 14(3): e14764, 2022 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-35014179

RESUMEN

Despite the clinical benefit of androgen-deprivation therapy (ADT), the majority of patients with advanced prostate cancer (PCa) ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we identified thioesterase superfamily member 6 (THEM6) as a marker of ADT resistance in PCa. THEM6 deletion reduces in vivo tumour growth and restores castration sensitivity in orthograft models of CRPC. Mechanistically, we show that the ER membrane-associated protein THEM6 regulates intracellular levels of ether lipids and is essential to trigger the induction of the ER stress response (UPR). Consequently, THEM6 loss in CRPC cells significantly alters ER function, reducing de novo sterol biosynthesis and preventing lipid-mediated activation of ATF4. Finally, we demonstrate that high THEM6 expression is associated with poor survival and correlates with high levels of UPR activation in PCa patients. Altogether, our results highlight THEM6 as a novel driver of therapy resistance in PCa as well as a promising target for the treatment of CRPC.


Asunto(s)
Antagonistas de Andrógenos , Neoplasias de la Próstata Resistentes a la Castración , Antagonistas de Andrógenos/farmacología , Antagonistas de Andrógenos/uso terapéutico , Regulación Neoplásica de la Expresión Génica , Humanos , Metabolismo de los Lípidos , Masculino , Neoplasias de la Próstata Resistentes a la Castración/tratamiento farmacológico , Neoplasias de la Próstata Resistentes a la Castración/patología
18.
J Neurochem ; 119(1): 136-52, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21819405

RESUMEN

Cardiac surgery involving extra-corporeal circulation can lead to cognitive dysfunction. As such surgery is associated with signs of inflammation and pro-inflammatory mediators activate tryptophan oxidation to neuroactive kynurenines which modulate NMDA receptor function and oxidative stress, we have measured blood concentrations of kynurenines and inflammatory markers in 28 patients undergoing coronary arterial graft surgery and, for comparison, 28 patients undergoing non-bypass thoracic surgery. A battery of cognitive tests was completed before and after the operations. The results show increased levels of tryptophan with decreased levels of kynurenine, anthranilic acid and 3-hydroxyanthranilic acid associated with bypass, and a later increase in kynurenic acid. Levels of neopterin and lipid peroxidation products rose after surgery in non-bypass patients whereas tumour necrosis factor-α and S100B levels increased after bypass. Changes of neopterin levels were greater after non-bypass surgery. Cognitive testing showed that the levels of tryptophan, kynurenine, kynurenic acid and the kynurenine/tryptophan ratio, correlated with aspects of post-surgery cognitive function, and were significant predictors of cognitive performance in tasks sensitive to frontal executive function and memory. Thus, anaesthesia and major surgery are associated with inflammatory changes and alterations in tryptophan oxidative metabolism which predict, and may play a role in, post-surgical cognitive function.


Asunto(s)
Cognición/fisiología , Puente de Arteria Coronaria/psicología , Quinurenina/sangre , Complicaciones Posoperatorias/diagnóstico , Complicaciones Posoperatorias/psicología , Procedimientos Quirúrgicos Torácicos/psicología , Adulto , Anciano , Biomarcadores/metabolismo , Cromatografía Líquida de Alta Presión , Ensayo de Inmunoadsorción Enzimática , Circulación Extracorporea , Femenino , Humanos , Inflamación/metabolismo , Peroxidación de Lípido , Masculino , Persona de Mediana Edad , Neopterin/sangre , Factores de Crecimiento Nervioso/metabolismo , Pruebas Neuropsicológicas , Valor Predictivo de las Pruebas , Desempeño Psicomotor/fisiología , Reproducibilidad de los Resultados , Subunidad beta de la Proteína de Unión al Calcio S100 , Proteínas S100/metabolismo , Test de Stroop , Prueba de Secuencia Alfanumérica , Triptófano/metabolismo , Factor de Necrosis Tumoral alfa/sangre , Aprendizaje Verbal
19.
Oncogene ; 40(13): 2355-2366, 2021 04.
Artículo en Inglés | MEDLINE | ID: mdl-33654198

RESUMEN

Peroxisome Proliferator-Activated Receptor Gamma (PPARG) is one of the three members of the PPAR family of transcription factors. Besides its roles in adipocyte differentiation and lipid metabolism, we recently demonstrated an association between PPARG and metastasis in prostate cancer. In this study a functional effect of PPARG on AKT serine/threonine kinase 3 (AKT3), which ultimately results in a more aggressive disease phenotype was identified. AKT3 has previously been shown to regulate PPARG co-activator 1 alpha (PGC1α) localisation and function through its action on chromosome maintenance region 1 (CRM1). AKT3 promotes PGC1α localisation to the nucleus through its inhibitory effects on CRM1, a known nuclear export protein. Collectively our results demonstrate how PPARG over-expression drives an increase in AKT3 levels, which in turn has the downstream effect of increasing PGC1α localisation within the nucleus, driving mitochondrial biogenesis. Furthermore, this increase in mitochondrial mass provides higher energetic output in the form of elevated ATP levels which may fuel the progression of the tumour cell through epithelial to mesenchymal transition (EMT) and ultimately metastasis.


Asunto(s)
PPAR gamma/genética , Coactivador 1-alfa del Receptor Activado por Proliferadores de Peroxisomas gamma/genética , Neoplasias de la Próstata/genética , Proteínas Proto-Oncogénicas c-akt/genética , Animales , Línea Celular Tumoral , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica , Humanos , Carioferinas/genética , Metabolismo de los Lípidos/genética , Masculino , Ratones , Mitocondrias/genética , Biogénesis de Organelos , Neoplasias de la Próstata/patología , Receptores Citoplasmáticos y Nucleares/genética , Proteína Exportina 1
20.
Cancer Res ; 81(13): 3664-3678, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33985973

RESUMEN

Androgen deprivation therapy (ADT) is the standard of care for treatment of nonresectable prostate cancer. Despite high treatment efficiency, most patients ultimately develop lethal castration-resistant prostate cancer (CRPC). In this study, we performed a comparative proteomic analysis of three in vivo, androgen receptor (AR)-responsive orthograft models of matched hormone-naïve prostate cancer and CRPC. Differential proteomic analysis revealed that distinct molecular mechanisms, including amino acid (AA) and fatty acid metabolism, are involved in the response to ADT in the different models. Despite this heterogeneity, Schlafen family member 5 (SLFN5) was identified as an AR-regulated protein in CRPC. SLFN5 expression was high in CRPC tumors and correlated with poor patient outcome. In vivo, SLFN5 depletion strongly impaired tumor growth in castrated conditions. Mechanistically, SLFN5 interacted with ATF4 and regulated the expression of LAT1, an essential AA transporter. Consequently, SLFN5 depletion in CRPC cells decreased intracellular levels of essential AA and impaired mTORC1 signaling in a LAT1-dependent manner. These results confirm that these orthograft models recapitulate the high degree of heterogeneity observed in patients with CRPC and further highlight SLFN5 as a clinically relevant target for CRPC. SIGNIFICANCE: This study identifies SLFN5 as a novel regulator of the LAT1 amino acid transporter and an essential contributor to mTORC1 activity in castration-resistant prostate cancer.


Asunto(s)
Biomarcadores de Tumor/metabolismo , Proteínas de Ciclo Celular/metabolismo , Regulación Neoplásica de la Expresión Génica , Transportador de Aminoácidos Neutros Grandes 1/metabolismo , Neoplasias de la Próstata Resistentes a la Castración/patología , Serina-Treonina Quinasas TOR/metabolismo , Factor de Transcripción Activador 4/genética , Factor de Transcripción Activador 4/metabolismo , Animales , Apoptosis , Biomarcadores de Tumor/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular , Humanos , Transportador de Aminoácidos Neutros Grandes 1/genética , Masculino , Diana Mecanicista del Complejo 1 de la Rapamicina/genética , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Metaboloma , Ratones , Ratones Desnudos , Pronóstico , Neoplasias de la Próstata Resistentes a la Castración/genética , Neoplasias de la Próstata Resistentes a la Castración/metabolismo , Proteoma , Tasa de Supervivencia , Serina-Treonina Quinasas TOR/genética , Transcriptoma , Células Tumorales Cultivadas , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA