Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 45
Filtrar
1.
Eur Phys J E Soft Matter ; 47(5): 36, 2024 May 27.
Artículo en Inglés | MEDLINE | ID: mdl-38802588

RESUMEN

Fibrous networks such as collagen are common in biological systems. Recent theoretical and experimental efforts have shed light on the mechanics of single component networks. Most real biopolymer networks, however, are composites made of elements with different rigidity. For instance, the extracellular matrix in mammalian tissues consists of stiff collagen fibers in a background matrix of flexible polymers such as hyaluronic acid (HA). The interplay between different biopolymer components in such composite networks remains unclear. In this work, we use 2D coarse-grained models to study the nonlinear strain-stiffening behavior of composites. We introduce a local volume constraint to model the incompressibility of HA. We also perform rheology experiments on composites of collagen with HA. Theoretically and experimentally, we demonstrate that the linear shear modulus of composite networks can be increased by approximately an order of magnitude above the corresponding moduli of the pure components. Our model shows that this synergistic effect can be understood in terms of the local incompressibility of HA, which acts to suppress density fluctuations of the collagen matrix with which it is entangled.

2.
Phys Rev Lett ; 130(8): 088101, 2023 Feb 24.
Artículo en Inglés | MEDLINE | ID: mdl-36898114

RESUMEN

Networks of semiflexible or stiff polymers such as most biopolymers are known to deform inhomogeneously when sheared. The effects of such nonaffine deformation have been shown to be much stronger than for flexible polymers. To date, our understanding of nonaffinity in such systems is limited to simulations or specific 2D models of athermal fibers. Here, we present an effective medium theory for nonaffine deformation of semiflexible polymer and fiber networks, which is general to both 2D and 3D and in both thermal and athermal limits. The predictions of this model are in good agreement with both prior computational and experimental results for linear elasticity. Moreover, the framework we introduce can be extended to address nonlinear elasticity and network dynamics.

3.
Phys Rev Lett ; 131(17): 178201, 2023 Oct 27.
Artículo en Inglés | MEDLINE | ID: mdl-37955486

RESUMEN

Networks and dense suspensions frequently reside near a boundary between soft (or fluidlike) and rigid (or solidlike) regimes. Transitions between these regimes can be driven by changes in structure, density, or applied stress or strain. In general, near the onset or loss of rigidity in these systems, dissipation-limiting heterogeneous nonaffine rearrangements dominate the macroscopic viscoelastic response, giving rise to diverging relaxation times and power-law rheology. Here, we describe a simple quantitative relationship between nonaffinity and the excess viscosity. We test this nonaffinity-viscosity relationship computationally and demonstrate its rheological consequences in simulations of strained filament networks and dense suspensions. We also predict critical signatures in the rheology of semiflexible and stiff biopolymer networks near the strain stiffening transition.

4.
Soft Matter ; 19(42): 8124-8135, 2023 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-37846933

RESUMEN

Networks of stiff fibers govern the elasticity of biological structures such as the extracellular matrix of collagen. These networks are known to stiffen nonlinearly under shear or extensional strain. Recently, it has been shown that such stiffening is governed by a strain-controlled athermal but critical phase transition, from a floppy phase below the critical strain to a rigid phase above the critical strain. While this phase transition has been extensively studied numerically and experimentally, a complete analytical theory for this transition remains elusive. Here, we present an effective medium theory (EMT) for this mechanical phase transition of fiber networks. We extend a previous EMT appropriate for linear elasticity to incorporate nonlinear effects via an anharmonic Hamiltonian. The mean-field predictions of this theory, including the critical exponents, scaling relations and non-affine fluctuations qualitatively agree with previous experimental and numerical results.

5.
Proc Natl Acad Sci U S A ; 117(35): 21037-21044, 2020 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-32817547

RESUMEN

Tissues commonly consist of cells embedded within a fibrous biopolymer network. Whereas cell-free reconstituted biopolymer networks typically soften under applied uniaxial compression, various tissues, including liver, brain, and fat, have been observed to instead stiffen when compressed. The mechanism for this compression-stiffening effect is not yet clear. Here, we demonstrate that when a material composed of stiff inclusions embedded in a fibrous network is compressed, heterogeneous rearrangement of the inclusions can induce tension within the interstitial network, leading to a macroscopic crossover from an initial bending-dominated softening regime to a stretching-dominated stiffening regime, which occurs before and independently of jamming of the inclusions. Using a coarse-grained particle-network model, we first establish a phase diagram for compression-driven, stretching-dominated stress propagation and jamming in uniaxially compressed two- and three-dimensional systems. Then, we demonstrate that a more detailed computational model of stiff inclusions in a subisostatic semiflexible fiber network exhibits quantitative agreement with the predictions of our coarse-grained model as well as qualitative agreement with experiments.


Asunto(s)
Fuerza Compresiva/fisiología , Biología Computacional/métodos , Biopolímeros/química , Coloides/química , Simulación por Computador , Elasticidad , Cuerpos de Inclusión/fisiología , Modelos Químicos , Fenómenos Físicos , Presión , Estrés Mecánico
6.
Nano Lett ; 22(12): 4725-4732, 2022 06 22.
Artículo en Inglés | MEDLINE | ID: mdl-35678828

RESUMEN

In this work, we investigate whether stiffening in compression is a feature of single cells and whether the intracellular polymer networks that comprise the cytoskeleton (all of which stiffen with increasing shear strain) stiffen or soften when subjected to compressive strains. We find that individual cells, such as fibroblasts, stiffen at physiologically relevant compressive strains, but genetic ablation of vimentin diminishes this effect. Further, we show that unlike networks of purified F-actin or microtubules, which soften in compression, vimentin intermediate filament networks stiffen in both compression and extension, and we present a theoretical model to explain this response based on the flexibility of vimentin filaments and their surface charge, which resists volume changes of the network under compression. These results provide a new framework by which to understand the mechanical responses of cells and point to a central role of intermediate filaments in response to compression.


Asunto(s)
Citoesqueleto , Filamentos Intermedios , Citoesqueleto de Actina , Actinas , Vimentina
7.
Phys Rev Lett ; 127(15): 158001, 2021 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-34678027

RESUMEN

The mechanical properties of soft materials can be probed on small length scales by microrheology. A common approach tracks fluctuations of micrometer-sized beads embedded in the medium to be characterized. This approach yields results that depend on probe size when the medium has structure on comparable length scales. Here, we introduce filament-based microrheology using high-aspect-ratio semiflexible filaments as probes. Such quasi-1D probes are much less invasive than beads due to their small cross sections. Moreover, by imaging transverse bending modes, we simultaneously determine the micromechanical response of the medium on multiple length scales corresponding to the mode wavelengths. We use semiflexible single-walled carbon nanotubes as probes that can be accurately and rapidly imaged based on their stable near-IR fluorescence. We find that the viscoelastic properties of sucrose, polyethylene oxide, and hyaluronic acid solutions measured in this way are in good agreement with those measured by conventional micro- and macrorheology.

8.
Phys Rev Lett ; 127(10): 108101, 2021 Sep 03.
Artículo en Inglés | MEDLINE | ID: mdl-34533352

RESUMEN

We investigate the rheological properties of interpenetrating networks reconstituted from the main cytoskeletal components: filamentous actin, microtubules, and vimentin intermediate filaments. The elastic modulus is determined largely by actin, with little contribution from either microtubules or vimentin. However, vimentin dramatically impacts the relaxation, with even small amounts significantly increasing the relaxation time of the interpenetrating network. This highly unusual decoupling between dissipation and elasticity may reflect weak attractive interactions between vimentin and actin networks.


Asunto(s)
Filamentos Intermedios/química , Modelos Químicos , Vimentina/química , Actinas/química , Actinas/metabolismo , Citoesqueleto/química , Citoesqueleto/metabolismo , Células Eucariotas , Filamentos Intermedios/metabolismo , Microtúbulos/química , Microtúbulos/metabolismo , Reología/métodos , Vimentina/metabolismo
9.
Soft Matter ; 17(20): 5122-5130, 2021 May 28.
Artículo en Inglés | MEDLINE | ID: mdl-33735362

RESUMEN

Carbon nanotubes (CNTs) are stiff, all-carbon macromolecules with diameters as small as one nanometer and few microns long. Solutions of CNTs in chlorosulfonic acid (CSA) follow the phase behavior of rigid rod polymers interacting via a repulsive potential and display a liquid crystalline phase at sufficiently high concentration. Here, we show that small-angle X-ray scattering and polarized light microscopy data can be combined to characterize quantitatively the morphology of liquid crystalline phases formed in CNT solutions at concentrations from 3 to 6.5% by volume. We find that upon increasing their concentration, CNTs self-assemble into a liquid crystalline phase with a pleated texture and with a large inter-particle spacing that could be indicative of a transition to higher-order liquid crystalline phases. We explain how thermal undulations of CNTs can enhance their electrostatic repulsion and increase their effective diameter by an order of magnitude. By calculating the critical concentration, where the mean amplitude of undulation of an unconstrained rod becomes comparable to the rod spacing, we find that thermal undulations start to affect steric forces at concentrations as low as the isotropic cloud point in CNT solutions.

10.
Phys Rev Lett ; 125(20): 208101, 2020 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-33258614

RESUMEN

Animal cells form contractile structures to promote various functions, from cell motility to cell division. Force generation in these structures is often due to molecular motors such as myosin that require polar substrates for their function. Here, we propose a motor-free mechanism that can generate contraction in biopolymer networks without the need for polarity. This mechanism is based on active binding and unbinding of cross-linkers that breaks the principle of detailed balance, together with the asymmetric force-extension response of semiflexible biopolymers. We find that these two ingredients can generate steady state contraction via a nonthermal, ratchetlike process. We calculate the resulting force-velocity relation using both coarse-grained and microscopic models.


Asunto(s)
Modelos Biológicos , Proteínas Motoras Moleculares/química , Proteínas Motoras Moleculares/metabolismo , Animales , Fenómenos Biomecánicos , Fenómenos Fisiológicos Celulares , Elasticidad , Fenómenos Mecánicos
11.
Soft Matter ; 16(29): 6784-6793, 2020 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-32638813

RESUMEN

Fibrous networks such as collagen are common in physiological systems. One important function of these networks is to provide mechanical stability for cells and tissues. At physiological levels of connectivity, such networks would be mechanically unstable with only central-force interactions. While networks can be stabilized by bending interactions, it has also been shown that they exhibit a critical transition from floppy to rigid as a function of applied strain. Beyond a certain strain threshold, it is predicted that underconstrained networks with only central-force interactions exhibit a discontinuity in the shear modulus. We study the finite-size scaling behavior of this transition and identify both the mechanical discontinuity and critical exponents in the thermodynamic limit. We find both non-mean-field behavior and evidence for a hyperscaling relation for the critical exponents, for which the network stiffness is analogous to the heat capacity for thermal phase transitions. Further evidence for this is also found in the self-averaging properties of fiber networks.


Asunto(s)
Colágeno , Transición de Fase , Termodinámica
12.
Phys Rev Lett ; 122(18): 188003, 2019 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-31144872

RESUMEN

As a function of connectivity, spring networks exhibit a critical transition between floppy and rigid phases at an isostatic threshold. For connectivity below this threshold, fiber networks were recently shown theoretically to exhibit a rigidity transition with corresponding critical signatures as a function of strain. Experimental collagen networks were also shown to be consistent with these predictions. We develop a scaling theory for this strain-controlled transition. Using a real-space renormalization approach, we determine relations between the critical exponents governing the transition, which we verify for the strain-controlled transition using numerical simulations of both triangular lattice-based and packing-derived fiber networks.

13.
Soft Matter ; 15(31): 6300-6307, 2019 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-31342050

RESUMEN

Networks of filamentous actin (F-actin) are important for the mechanics of most animal cells. These cytoskeletal networks are highly dynamic, with a variety of actin-associated proteins that control cross-linking, polymerization and force generation in the cytoskeleton. Inspired by recent rheological experiments on reconstituted solutions of dynamic actin filaments, we report a theoretical model that describes stress relaxation behavior of these solutions in the presence of severing proteins. We show that depending on the kinetic rates of assembly, disassembly, and severing, one can observe both length-dependent and length-independent relaxation behavior.


Asunto(s)
Citoesqueleto de Actina/metabolismo , Actinas/metabolismo , Citoesqueleto/metabolismo , Modelos Biológicos
14.
Biophys J ; 114(11): 2665-2678, 2018 06 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874616

RESUMEN

Collagen forms fibrous networks that reinforce tissues and provide an extracellular matrix for cells. These networks exhibit remarkable strain-stiffening properties that tailor the mechanical functions of tissues and regulate cell behavior. Recent models explain this nonlinear behavior as an intrinsic feature of disordered networks of stiff fibers. Here, we experimentally validate this theoretical framework by measuring the elastic properties of collagen networks over a wide range of self-assembly conditions. We show that the model allows us to quantitatively relate both the linear and nonlinear elastic behavior of collagen networks to their underlying architecture. Specifically, we identify the local coordination number (or connectivity) ã€ˆz〉 as a key architectural parameter that governs the elastic response of collagen. The network elastic response reveals that 〈z〉 decreases from 3.5 to 3 as the polymerization temperature is raised from 26 to 37°C while being weakly dependent on concentration. We furthermore infer a Young's modulus of 1.1 MPa for the collagen fibrils from the linear modulus. Scanning electron microscopy confirms that 〈z〉 is between three and four but is unable to detect the subtle changes in 〈z〉 with polymerization conditions that rheology is sensitive to. Finally, we show that, consistent with the model, the initial stress-stiffening response of collagen networks is controlled by the negative normal stress that builds up under shear. Our work provides a predictive framework to facilitate future studies of the regulatory effect of extracellular matrix molecules on collagen mechanics. Moreover, our findings can aid mechanobiological studies of wound healing, fibrosis, and cancer metastasis, which require collagen matrices with tunable mechanical properties.


Asunto(s)
Colágeno/química , Estrés Mecánico , Fenómenos Biomecánicos , Colágeno/metabolismo , Módulo de Elasticidad , Multimerización de Proteína , Estructura Cuaternaria de Proteína
15.
Proc Natl Acad Sci U S A ; 112(31): 9573-8, 2015 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-26195769

RESUMEN

Collagen is the main structural and load-bearing element of various connective tissues, where it forms the extracellular matrix that supports cells. It has long been known that collagenous tissues exhibit a highly nonlinear stress-strain relationship, although the origins of this nonlinearity remain unknown. Here, we show that the nonlinear stiffening of reconstituted type I collagen networks is controlled by the applied stress and that the network stiffness becomes surprisingly insensitive to network concentration. We demonstrate how a simple model for networks of elastic fibers can quantitatively account for the mechanics of reconstituted collagen networks. Our model points to the important role of normal stresses in determining the nonlinear shear elastic response, which can explain the approximate exponential relationship between stress and strain reported for collagenous tissues. This further suggests principles for the design of synthetic fiber networks with collagen-like properties, as well as a mechanism for the control of the mechanics of such networks.


Asunto(s)
Colágeno Tipo I/química , Estrés Mecánico , Fenómenos Biomecánicos , Modelos Biológicos
16.
Soft Matter ; 13(34): 5624-5644, 2017 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-28812094

RESUMEN

Living systems provide a paradigmatic example of active soft matter. Cells and tissues comprise viscoelastic materials that exert forces and can actively change shape. This strikingly autonomous behavior is powered by the cytoskeleton, an active gel of semiflexible filaments, crosslinks, and molecular motors inside cells. Although individual motors are only a few nm in size and exert minute forces of a few pN, cells spatially integrate the activity of an ensemble of motors to produce larger contractile forces (∼nN and greater) on cellular, tissue, and organismal length scales. Here we review experimental and theoretical studies on contractile active gels composed of actin filaments and myosin motors. Unlike other active soft matter systems, which tend to form ordered patterns, actin-myosin systems exhibit a generic tendency to contract. Experimental studies of reconstituted actin-myosin model systems have long suggested that a mechanical interplay between motor activity and the network's connectivity governs this contractile behavior. Recent theoretical models indicate that this interplay can be understood in terms of percolation models, extended to include effects of motor activity on the network connectivity. Based on concepts from percolation theory, we propose a state diagram that unites a large body of experimental observations. This framework provides valuable insights into the mechanisms that drive cellular shape changes and also provides design principles for synthetic active materials.

17.
Soft Matter ; 13(47): 8886-8893, 2017 Dec 06.
Artículo en Inglés | MEDLINE | ID: mdl-29057402

RESUMEN

Fibrous networks are ideal functional materials since they provide mechanical rigidity at low weight. Here, we demonstrate that fibrous networks of the blood clotting protein fibrin undergo a strong and irreversible increase in their mechanical rigidity in response to uniaxial compression. This rigidification can be precisely controlled by the level of applied compressive strain, providing a means to program the network rigidity without having to change its composition. To identify the underlying mechanism we measure single fiber-fiber interactions using optical tweezers. We further develop a minimal computational model of cohesive fiber networks that shows that stiffening arises due to the formation of new bonds in the compressed state, which develop tensile stress when the network is re-expanded. The model predicts that the network stiffness after a compression cycle obeys a power-law dependence on tensile stress, which we confirm experimentally. This finding provides new insights into how biological tissues can adapt themselves independently of any cellular processes, offering new perspectives to inspire the design of reprogrammable materials.

18.
Soft Matter ; 12(7): 2145-56, 2016 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-26761718

RESUMEN

Bundles of polymer filaments are responsible for the rich and unique mechanical behaviors of many biomaterials, including cells and extracellular matrices. In fibrin biopolymers, whose nonlinear elastic properties are crucial for normal blood clotting, protofibrils self-assemble and bundle to form networks of semiflexible fibers. Here we show that the extraordinary strain-stiffening response of fibrin networks is a direct reflection of the hierarchical architecture of the fibrin fibers. We measure the rheology of networks of unbundled protofibrils and find excellent agreement with an affine model of extensible wormlike polymers. By direct comparison with these data, we show that physiological fibrin networks composed of thick fibers can be modeled as networks of tight protofibril bundles. We demonstrate that the tightness of coupling between protofibrils in the fibers can be tuned by the degree of enzymatic intermolecular crosslinking by the coagulation factor XIII. Furthermore, at high stress, the protofibrils contribute independently to the network elasticity, which may reflect a decoupling of the tight bundle structure. The hierarchical architecture of fibrin fibers can thus account for the nonlinearity and enormous elastic resilience characteristic of blood clots.


Asunto(s)
Biopolímeros/química , Factor XIII/química , Fibrina/química , Fenómenos Biomecánicos , Elasticidad , Dureza , Humanos , Cinética , Reología , Estrés Mecánico , Termodinámica
19.
Soft Matter ; 12(22): 5050-60, 2016 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-27174568

RESUMEN

We present theoretical and experimental studies of the elastic response of fibrous networks subjected to uniaxial strain. Uniaxial compression or extension is applied to extracellular networks of fibrin and collagen using a shear rheometer with free water in/outflow. Both uniaxial stress and the network shear modulus are measured. Prior work [van Oosten, et al., Sci. Rep., 2015, 6, 19270] has shown softening/stiffening of these networks under compression/extension, together with a nonlinear response to shear, but the origin of such behaviour remains poorly understood. Here, we study how uniaxial strain influences the nonlinear mechanics of fibrous networks. Using a computational network model with bendable and stretchable fibres, we show that the softening/stiffening behaviour can be understood for fixed lateral boundaries in 2D and 3D networks with comparable average connectivities to the experimental extracellular networks. Moreover, we show that the onset of stiffening depends strongly on the imposed uniaxial strain. Our study highlights the importance of both uniaxial strain and boundary conditions in determining the mechanical response of hydrogels.

20.
FASEB J ; 28(2): 536-47, 2014 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-24249634

RESUMEN

A large body of evidence indicates that single cells in vitro respond to changes in gravity, and that this response might play an important role for physiological changes at the organism level during spaceflight. Gravity can lead to changes in cell proliferation, differentiation, signaling, and gene expression. At first glance, gravitational forces seem too small to affect bodies with the size of a cell. Thus, the initial response to gravity is both puzzling and important for understanding physiological changes in space. This also offers a unique environment to study the mechanical response of cells. In the past 2 decades, important steps have been made in the field of mechanobiology, and we use these advances to reevaluate the response of single cells to changes in gravity. Recent studies have focused on the cytoskeleton as initial gravity sensor. Thus, we review the observed changes in the cytoskeleton in a microgravity environment, both during spaceflight and in ground-based simulation techniques. We also evaluate to what degree the current experimental evidence supports the cytoskeleton as primary gravity sensor. Finally, we consider how the cytoskeleton itself could be affected by changed gravity. To make the next step toward understanding the response of cells to altered gravity, the challenge will be to track changes quantitatively and on short timescales.


Asunto(s)
Citoesqueleto/metabolismo , Gravitación , Actinas/metabolismo , Animales , Humanos , Mecanotransducción Celular/fisiología , Tubulina (Proteína)/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA