Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nature ; 590(7846): 438-444, 2021 02.
Artículo en Inglés | MEDLINE | ID: mdl-33505029

RESUMEN

Long-term climate change and periodic environmental extremes threaten food and fuel security1 and global crop productivity2-4. Although molecular and adaptive breeding strategies can buffer the effects of climatic stress and improve crop resilience5, these approaches require sufficient knowledge of the genes that underlie productivity and adaptation6-knowledge that has been limited to a small number of well-studied model systems. Here we present the assembly and annotation of the large and complex genome of the polyploid bioenergy crop switchgrass (Panicum virgatum). Analysis of biomass and survival among 732 resequenced genotypes, which were grown across 10 common gardens that span 1,800 km of latitude, jointly revealed extensive genomic evidence of climate adaptation. Climate-gene-biomass associations were abundant but varied considerably among deeply diverged gene pools. Furthermore, we found that gene flow accelerated climate adaptation during the postglacial colonization of northern habitats through introgression of alleles from a pre-adapted northern gene pool. The polyploid nature of switchgrass also enhanced adaptive potential through the fractionation of gene function, as there was an increased level of heritable genetic diversity on the nondominant subgenome. In addition to investigating patterns of climate adaptation, the genome resources and gene-trait associations developed here provide breeders with the necessary tools to increase switchgrass yield for the sustainable production of bioenergy.


Asunto(s)
Aclimatación/genética , Biocombustibles , Genoma de Planta/genética , Genómica , Calentamiento Global , Panicum/genética , Poliploidía , Biomasa , Ecotipo , Evolución Molecular , Flujo Génico , Pool de Genes , Introgresión Genética , Anotación de Secuencia Molecular , Panicum/clasificación , Panicum/crecimiento & desarrollo , Estados Unidos
2.
Genetics ; 215(1): 267-284, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32205398

RESUMEN

Multienvironment trials (METs) are widely used to assess the performance of promising crop germplasm. Though seldom designed to elucidate genetic mechanisms, MET data sets are often much larger than could be duplicated for genetic research and, given proper interpretation, may offer valuable insights into the genetics of adaptation across time and space. The Cooperative Dry Bean Nursery (CDBN) is a MET for common bean (Phaseolus vulgaris) grown for > 70 years in the United States and Canada, consisting of 20-50 entries each year at 10-20 locations. The CDBN provides a rich source of phenotypic data across entries, years, and locations that is amenable to genetic analysis. To study stable genetic effects segregating in this MET, we conducted genome-wide association studies (GWAS) using best linear unbiased predictions derived across years and locations for 21 CDBN phenotypes and genotypic data (1.2 million SNPs) for 327 CDBN genotypes. The value of this approach was confirmed by the discovery of three candidate genes and genomic regions previously identified in balanced GWAS. Multivariate adaptive shrinkage (mash) analysis, which increased our power to detect significant correlated effects, found significant effects for all phenotypes. Mash found two large genomic regions with effects on multiple phenotypes, supporting a hypothesis of pleiotropic or linked effects that were likely selected on in pursuit of a crop ideotype. Overall, our results demonstrate that statistical genomics approaches can be used on MET phenotypic data to discover significant genetic effects and to define genomic regions associated with crop improvement.


Asunto(s)
Ambiente , Evolución Molecular , Estudio de Asociación del Genoma Completo/métodos , Phaseolus/genética , Fitomejoramiento/métodos , Carácter Cuantitativo Heredable , Estudio de Asociación del Genoma Completo/normas , Phaseolus/crecimiento & desarrollo , Fenotipo , Fitomejoramiento/normas , Polimorfismo de Nucleótido Simple
3.
Genetics ; 185(4): 1369-80, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20479143

RESUMEN

Theoretical arguments suggest that mutation rates influence the proliferation and maintenance of RNA editing. We identified RNA editing sites in five species within the angiosperm genus Silene that exhibit highly divergent mitochondrial mutation rates. We found that mutational acceleration has been associated with rapid loss of mitochondrial editing sites. In contrast, we did not find a significant difference in the frequency of editing in chloroplast genes, which lack the mutation rate variation observed in the mitochondrial genome. As found in other angiosperms, the rate of substitution at RNA editing sites in Silene greatly exceeds the rate at synonymous sites, a pattern that has previously been interpreted as evidence for selection against RNA editing. Alternatively, we suggest that editing sites may experience higher rates of C-to-T mutation than other portions of the genome. Such a pattern could be caused by gene conversion with reverse-transcribed mRNA (i.e., retroprocessing). If so, the genomic distribution of RNA editing site losses in Silene suggests that such conversions must be occurring at a local scale such that only one or two editing sites are affected at a time. Because preferential substitution at editing sites appears to occur in angiosperms regardless of the mutation rate, we conclude that mitochondrial rate accelerations within Silene have "fast-forwarded" a preexisting pattern but have not fundamentally changed the evolutionary forces acting on RNA editing sites.


Asunto(s)
Genoma Mitocondrial/genética , Mutación , Edición de ARN/genética , Silene/genética , Sitios de Unión/genética , Evolución Molecular , Variación Genética , Proteínas Mitocondriales/genética , Filogenia , Proteínas de Plantas/genética , ARN del Cloroplasto/genética , ARN de Planta/genética , Selección Genética , Silene/clasificación , Especificidad de la Especie
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA