Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
J Exp Bot ; 2024 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-39377267

RESUMEN

Environmental change requires more crop production per water use to meet the rising global food demands. However, improving crop intrinsic water use efficiency (iWUE) usually comes at the expense of carbon assimilation. Sorghum is a key crop in many vulnerable agricultural systems with higher tolerance to water stress (WS) than most widely planted crops. To investigate physiological controls on iWUE and its inheritance in sorghum we screened 89 genotypes selected based on inherited haplotypes from an elite or five exotics lines, containing a mix of geographical origins and dry vs. milder climates, which included different aquaporin (AQP) alleles. We found significant variation among key highly heritable gas exchange and hydraulic traits, with some being significantly affected by variation in haplotypes among parental lines. Plants with a higher proportion of the non-stomatal component of iWUE still maintained iWUE under WS by maintaining photosynthetic capacity, independently of reduction in leaf hydraulic conductance. Haplotypes associated with two AQPs (SbPIP1.1 and SbTIP3.2) influenced iWUE and related traits. These findings expand the range of traits that bridge the trade-off between iWUE and productivity in C4 crops, and provide possible genetic regions that can be targeted for breeding.

2.
BMC Plant Biol ; 23(1): 91, 2023 Feb 13.
Artículo en Inglés | MEDLINE | ID: mdl-36782130

RESUMEN

BACKGROUND: Mitochondria are organelles within eukaryotic cells that are central to the metabolic processes of cellular respiration and ATP production. However, the evolution of mitochondrial genomes (mitogenomes) in plants is virtually unknown compared to animal mitogenomes or plant plastids, due to complex structural variation and long stretches of repetitive DNA making accurate genome assembly more challenging. Comparing the structural and sequence differences of organellar genomes within and between sorghum species is an essential step in understanding evolutionary processes such as organellar sequence transfer to the nuclear genome as well as improving agronomic traits in sorghum related to cellular metabolism. RESULTS: Here, we assembled seven sorghum mitochondrial and plastid genomes and resolved reticulated mitogenome structures with multilinked relationships that could be grouped into three structural conformations that differ in the content of repeats and genes by contig. The grouping of these mitogenome structural types reflects the two domestication events for sorghum in east and west Africa. CONCLUSIONS: We report seven mitogenomes of sorghum from different cultivars and wild sources. The assembly method used here will be helpful in resolving complex genomic structures in other plant species. Our findings give new insights into the structure of sorghum mitogenomes that provides an important foundation for future research into the improvement of sorghum traits related to cellular respiration, cytonuclear incompatibly, and disease resistance.


Asunto(s)
Genoma Mitocondrial , Sorghum , Genoma Mitocondrial/genética , Sorghum/genética , Filogenia , Domesticación , Plantas/genética , Núcleo Celular , Evolución Molecular , Genoma de Planta/genética
3.
Theor Appl Genet ; 136(10): 209, 2023 Sep 16.
Artículo en Inglés | MEDLINE | ID: mdl-37715848

RESUMEN

KEY MESSAGE: This study quantified genetic variation in root system architecture (root number, angle, length and dry mass) within a diversity panel of 1771 Ethiopian sorghum landraces and identified 22 genomic regions associated with the root variations. The root system architecture (RSA) of crop plants influences adaptation to water-limited conditions and determines the capacity of a plant to access soil water and nutrients. Four key root traits (number, angle, length and dry mass) were evaluated in a diversity panel of 1771 Ethiopian sorghum landraces using purpose-built root chambers. Significant genetic variation was observed in all studied root traits, with nodal root angle ranging from 16.4° to 26.6°, with a high repeatability of 78.9%. Genome wide association studies identified a total of 22 genomic regions associated with root traits which were distributed on all chromosomes except chromosome SBI-10. Among the 22 root genomic regions, 15 co-located with RSA trait QTL previously identified in sorghum, with the remaining seven representing novel RSA QTL. The majority (85.7%) of identified root angle QTL also co-localized with QTL previously identified for stay-green in sorghum. This suggests that the stay-green phenotype might be associated with root architecture that enhances water extraction during water stress conditions. The results open avenues for manipulating root phenotypes to improve productivity in abiotic stress environments via marker-assisted selection.


Asunto(s)
Estudio de Asociación del Genoma Completo , Sorghum , Sorghum/genética , Grano Comestible , Genómica , Nutrientes
4.
Plant J ; 108(1): 231-243, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34309934

RESUMEN

Variation in grain size, a major determinant of grain yield and quality in cereal crops, is determined by both the plant's genetic potential and the available assimilate to fill the grain in the absence of stress. This study investigated grain size variation in response to variation in assimilate supply in sorghum using a diversity panel (n = 837) and a backcross-nested association mapping population (n = 1421) across four experiments. To explore the effects of genetic potential and assimilate availability on grain size, the top half of selected panicles was removed at anthesis. Results showed substantial variation in five grain size parameters with high heritability. Artificial reduction in grain number resulted in a general increase in grain weight, with the extent of the increase varying across genotypes. Genome-wide association studies identified 44 grain size quantitative trait locus (QTL) that were likely to act on assimilate availability and 50 QTL that were likely to act on genetic potential. This finding was further supported by functional enrichment analysis and co-location analysis with known grain number QTL and candidate genes. RNA interference and overexpression experiments were conducted to validate the function of one of the identified gene, SbDEP1, showing that SbDEP1 positively regulates grain number and negatively regulates grain size by controlling primary branching in sorghum. Haplotype analysis of SbDEP1 suggested a possible role in racial differentiation. The enhanced understanding of grain size variation in relation to assimilate availability presented in this study will benefit sorghum improvement and have implications for other cereal crops.


Asunto(s)
Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Productos Agrícolas , Grano Comestible/genética , Grano Comestible/crecimiento & desarrollo , Estudio de Asociación del Genoma Completo , Genotipo , Haplotipos , Fenotipo , Semillas/genética , Semillas/crecimiento & desarrollo , Sorghum/crecimiento & desarrollo
5.
BMC Plant Biol ; 22(1): 378, 2022 Jul 29.
Artículo en Inglés | MEDLINE | ID: mdl-35906543

RESUMEN

BACKGROUND: The Plant Genetic Resources Centre at the Uganda National Gene Bank houses has over 3000 genetically diverse landraces and wild relatives of Sorghum bicolor accessions. This genetic diversity resource is untapped, under-utilized, and has not been systematically incorporated into sorghum breeding programs. In this study, we characterized the germplasm collection using whole-genome SNP markers (DArTseq). Discriminant analysis of principal components (DAPC) was implemented to study the racial ancestry of the accessions in comparison to a global sorghum diversity set and characterize the sub-groups present in the Ugandan (UG) germplasm. RESULTS: Population structure and phylogenetic analysis revealed the presence of five subgroups among the Ugandan accessions. The samples from the highlands of the southwestern region were genetically distinct as compared to the rest of the population. This subset was predominated by the caudatum race and unique in comparison to the other sub-populations. In this study, we detected QTL for juvenile cold tolerance by genome-wide association studies (GWAS) resulting in the identification of 4 markers associated (-log10p > 3) to survival under cold stress under both field and climate chamber conditions, located on 3 chromosomes (02, 06, 09). To our best knowledge, the QTL on Sb09 with the strongest association was discovered for the first time. CONCLUSION: This study demonstrates how genebank genomics can potentially facilitate effective and efficient usage of valuable, untapped germplasm collections for agronomic trait evaluation and subsequent allele mining. In face of adverse climate change, identification of genomic regions potentially involved in the adaptation of Ugandan sorghum accessions to cooler climatic conditions would be of interest for the expansion of sorghum production into temperate latitudes.


Asunto(s)
Sorghum , Variación Genética , Estudio de Asociación del Genoma Completo , Genómica/métodos , Filogenia , Fitomejoramiento , Sorghum/genética , Uganda
6.
Biochem Soc Trans ; 50(1): 583-596, 2022 02 28.
Artículo en Inglés | MEDLINE | ID: mdl-35212360

RESUMEN

DNA methylation is a chromatin modification that plays an essential role in regulating gene expression and genome stability and it is typically associated with gene silencing and heterochromatin. Owing to its heritability, alterations in the patterns of DNA methylation have the potential to provide for epigenetic inheritance of traits. Contemporary epigenomic technologies provide information beyond sequence variation and could supply alternative sources of trait variation for improvement in crops such as sorghum. Yet, compared with other species such as maize and rice, the sorghum DNA methylome is far less well understood. The distribution of CG, CHG, and CHH methylation in the genome is different compared with other species. CG and CHG methylation levels peak around centromeric segments in the sorghum genome and are far more depleted in the gene dense chromosome arms. The genes regulating DNA methylation in sorghum are also yet to be functionally characterised; better understanding of their identity and functional analysis of DNA methylation machinery mutants in diverse genotypes will be important to better characterise the sorghum methylome. Here, we catalogue homologous genes encoding methylation regulatory enzymes in sorghum based on genes in Arabidopsis, maize, and rice. Discovering variation in the methylome may uncover epialleles that provide extra information to explain trait variation and has the potential to be applied in epigenome-wide association studies or genomic prediction. DNA methylation can also improve genome annotations and discover regulatory elements underlying traits. Thus, improving our knowledge of the sorghum methylome can enhance our understanding of the molecular basis of traits and may be useful to improve sorghum performance.


Asunto(s)
Arabidopsis , Oryza , Sorghum , Arabidopsis/genética , Metilación de ADN , Epigenoma , Epigenómica , Regulación de la Expresión Génica de las Plantas , Silenciador del Gen , Oryza/genética , Sorghum/genética , Zea mays/genética
7.
J Exp Bot ; 73(3): 801-816, 2022 01 27.
Artículo en Inglés | MEDLINE | ID: mdl-34698817

RESUMEN

Developing sorghum genotypes adapted to different light environments requires understanding of a plant's ability to capture light, determined through leaf angle specifically. This study dissected the genetic basis of leaf angle in 3 year field trials at two sites, using a sorghum diversity panel (729 accessions). A wide range of variation in leaf angle with medium heritability was observed. Leaf angle explained 36% variation in canopy light extinction coefficient, highlighting the extent to which variation in leaf angle influences light interception at the whole-canopy level. This study also found that the sorghum races of Guinea and Durra consistently having the largest and smallest leaf angle, respectively, highlighting the potential role of leaf angle in adaptation to distinct environments. The genome-wide association study detected 33 quantitative trait loci (QTLs) associated with leaf angle. Strong synteny was observed with previously detected leaf angle QTLs in maize (70%) and rice (40%) within 10 cM, among which the overlap was significantly enriched according to χ2 tests, suggesting a highly consistent genetic control in grasses. A priori leaf angle candidate genes identified in maize and rice were found to be enriched within a 1-cM window around the sorghum leaf angle QTLs. Additionally, protein domain analysis identified the WD40 protein domain as being enriched within a 1-cM window around the QTLs. These outcomes show that there is sufficient heritability and natural variation in the angle of upper leaves in sorghum which may be exploited to change light interception and optimize crop canopies for different contexts.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Hojas de la Planta/genética , Sitios de Carácter Cuantitativo/genética , Sorghum/genética
8.
J Exp Bot ; 73(19): 6711-6726, 2022 11 02.
Artículo en Inglés | MEDLINE | ID: mdl-35961690

RESUMEN

The stay-green trait is recognized as a key drought adaptation mechanism in cereals worldwide. Stay-green sorghum plants exhibit delayed senescence of leaves and stems, leading to prolonged growth, a reduced risk of lodging, and higher grain yield under end-of-season drought stress. More than 45 quantitative trait loci (QTL) associated with stay-green have been identified, including two major QTL (Stg1 and Stg2). However, the contributing genes that regulate functional stay-green are not known. Here we show that the PIN FORMED family of auxin efflux carrier genes induce some of the causal mechanisms driving the stay-green phenotype in sorghum, with SbPIN4 and SbPIN2 located in Stg1 and Stg2, respectively. We found that nine of 11 sorghum PIN genes aligned with known stay-green QTL. In transgenic studies, we demonstrated that PIN genes located within the Stg1 (SbPIN4), Stg2 (SbPIN2), and Stg3b (SbPIN1) QTL regions acted pleiotropically to modulate canopy development, root architecture, and panicle growth in sorghum, with SbPIN1, SbPIN2, and SbPIN4 differentially expressed in various organs relative to the non-stay-green control. The emergent consequence of such modifications in canopy and root architecture is a stay-green phenotype. Crop simulation modelling shows that the SbPIN2 phenotype can increase grain yield under drought.


Asunto(s)
Sequías , Sorghum , Sitios de Carácter Cuantitativo/genética , Sorghum/fisiología , Fenotipo , Adaptación Fisiológica/genética , Grano Comestible/genética
9.
Theor Appl Genet ; 135(9): 3057-3071, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35933636

RESUMEN

KEY MESSAGE: Leaf width was correlated with plant-level transpiration efficiency and associated with 19 QTL in sorghum, suggesting it could be a surrogate for transpiration efficiency in large breeding program. Enhancing plant transpiration efficiency (TE) by reducing transpiration without compromising photosynthesis and yield is a desirable selection target in crop improvement programs. While narrow individual leaf width has been correlated with greater intrinsic water use efficiency in C4 species, the extent to which this translates to greater plant TE has not been investigated. The aims of this study were to evaluate the correlation of leaf width with TE at the whole-plant scale and investigate the genetic control of leaf width in sorghum. Two lysimetry experiments using 16 genotypes varying for stomatal conductance and three field trials using a large sorghum diversity panel (n = 701 lines) were conducted. Negative associations of leaf width with plant TE were found in the lysimetry experiments, suggesting narrow leaves may result in reduced plant transpiration without trade-offs in biomass accumulation. A wide range in width of the largest leaf was found in the sorghum diversity panel with consistent ranking among sorghum races, suggesting that environmental adaptation may have a role in modifying leaf width. Nineteen QTL were identified by genome-wide association studies on leaf width adjusted for flowering time. The QTL identified showed high levels of correspondence with those in maize and rice, suggesting similarities in the genetic control of leaf width across cereals. Three a priori candidate genes for leaf width, previously found to regulate dorsoventrality, were identified based on a 1-cM threshold. This study provides useful physiological and genetic insights for potential manipulation of leaf width to improve plant adaptation to diverse environments.


Asunto(s)
Sorghum , Grano Comestible/genética , Estudio de Asociación del Genoma Completo , Fitomejoramiento , Hojas de la Planta/genética , Transpiración de Plantas/genética , Sorghum/genética , Agua/fisiología
10.
Plant Biotechnol J ; 18(4): 1093-1105, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31659829

RESUMEN

Grain size is a key yield component of cereal crops and a major quality attribute. It is determined by a genotype's genetic potential and its capacity to fill the grains. This study aims to dissect the genetic architecture of grain size in sorghum. An integrated genome-wide association study (GWAS) was conducted using a diversity panel (n = 837) and a BC-NAM population (n = 1421). To isolate genetic effects associated with genetic potential of grain size, rather than the genotype's capacity to fill the grains, a treatment of removing half of the panicle was imposed during flowering. Extensive and highly heritable variation in grain size was observed in both populations in 5 field trials, and 81 grain size QTL were identified in subsequent GWAS. These QTL were enriched for orthologues of known grain size genes in rice and maize, and had significant overlap with SNPs associated with grain size in rice and maize, supporting common genetic control of this trait among cereals. Grain size genes with opposite effect on grain number were less likely to overlap with the grain size QTL from this study, indicating the treatment facilitated identification of genetic regions related to the genetic potential of grain size. These results enhance understanding of the genetic architecture of grain size in cereal, and pave the way for exploration of underlying molecular mechanisms and manipulation of this trait in breeding practices.


Asunto(s)
Estudios de Asociación Genética , Semillas/crecimiento & desarrollo , Sorghum/genética , Fenotipo , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo
11.
Theor Appl Genet ; 133(11): 3201-3215, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32833037

RESUMEN

KEY MESSAGE: We detected 213 lodging QTLs and demonstrated that drought-induced stem lodging in grain sorghum is substantially associated with stay-green and plant height suggesting a critical role of carbon remobilisation. Sorghum is generally grown in water limited conditions and often lodges under post-anthesis drought, which reduces yield and quality. Due to its complexity, our understanding on the genetic control of lodging is very limited. We dissected the genetic architecture of lodging in grain sorghum through genome-wide association study (GWAS) on 2308 unique hybrids grown in 17 Australian sorghum trials over 3 years. The GWAS detected 213 QTLs, the majority of which showed a significant association with leaf senescence and plant height (72% and 71%, respectively). Only 16 lodging QTLs were not associated with either leaf senescence or plant height. The high incidence of multi-trait association for the lodging QTLs indicates that lodging in grain sorghum is mainly associated with plant height and traits linked to carbohydrate remobilisation. This result supported the selection for stay-green (delayed leaf senescence) to reduce lodging susceptibility, rather than selection for short stature and lodging resistance per se, which likely reduces yield. Additionally, our data suggested a protective effect of stay-green on weakening the association between lodging susceptibility and plant height. Our study also showed that lodging resistance might be improved by selection for stem composition but was unlikely to be improved by selection for classical resistance to stalk rots.


Asunto(s)
Carbono/metabolismo , Sequías , Sitios de Carácter Cuantitativo , Sorghum/crecimiento & desarrollo , Sorghum/genética , Australia , Metabolismo de los Hidratos de Carbono , Estudios de Asociación Genética , Haplotipos , Fenotipo , Tallos de la Planta/crecimiento & desarrollo
12.
Theor Appl Genet ; 133(3): 1009-1018, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31907563

RESUMEN

KEY MESSAGE: Multi-environment models using marker-based kinship information for both additive and dominance effects can accurately predict hybrid performance in different environments. Sorghum is an important hybrid crop that is grown extensively in many subtropical and tropical regions including Northern NSW and Queensland in Australia. The highly varying weather patterns in the Australian summer months mean that sorghum hybrids exhibit a great deal of variation in yield between locations. To ultimately enable prediction of the outcome of crossing parental lines, both additive effects on yield performance and dominance interaction effects need to be characterised. This paper demonstrates that fitting a linear mixed model that includes both types of effects calculated using genetic markers in relationship matrices improves predictions. Genotype by environment interactions was investigated by comparing FA1 (single-factor analytic) and FA2 (two-factor analytic) structures. The G×E causes a change in hybrid rankings between trials with a difference of up to 25% of the hybrids in the top 10% of each trial. The prediction accuracies increased with the addition of the dominance term (over and above that achieved with an additive effect alone) by an average of 15% and a maximum of 60%. The percentage of dominance of the total genetic variance varied between trials with the trials with higher broad-sense heritability having the greater percentage of dominance. The inclusion of dominance in the factor analytic models improves the accuracy of the additive effects. Breeders selecting high yielding parents for crossing need to be aware of effects due to environment and dominance.


Asunto(s)
Fitomejoramiento , Sorghum/genética , Australia , Clima , Epistasis Genética , Genes Dominantes , Estudios de Asociación Genética , Marcadores Genéticos , Variación Genética , Genómica , Genotipo , Modelos Genéticos , Linaje , Fenotipo , Polimorfismo de Nucleótido Simple , Selección Genética , Sorghum/crecimiento & desarrollo
13.
Theor Appl Genet ; 132(3): 751-766, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30343386

RESUMEN

KEY MESSAGE: We describe the development and application of the Sorghum QTL Atlas, a high-resolution, open-access research platform to facilitate candidate gene identification across three cereal species, sorghum, maize and rice. The mechanisms governing the genetic control of many quantitative traits are only poorly understood and have yet to be fully exploited. Over the last two decades, over a thousand QTL and GWAS studies have been published in the major cereal crops including sorghum, maize and rice. A large body of information has been generated on the genetic basis of quantitative traits, their genomic location, allelic effects and epistatic interactions. However, such QTL information has not been widely applied by cereal improvement programs and genetic researchers worldwide. In part this is due to the heterogeneous nature of QTL studies which leads QTL reliability variation from study to study. Using approaches to adjust the QTL confidence interval, this platform provides access to the most updated sorghum QTL information than any database available, spanning 23 years of research since 1995. The QTL database provides information on the predicted gene models underlying the QTL CI, across all sorghum genome assembly gene sets and maize and rice genome assemblies and also provides information on the diversity of the underlying genes and information on signatures of selection in sorghum. The resulting high-resolution, open-access research platform facilitates candidate gene identification across 3 cereal species, sorghum, maize and rice. Using a number of trait examples, we demonstrate the power and resolution of the resource to facilitate comparative genomics approaches to provide a bridge between genomics and applied breeding.


Asunto(s)
Productos Agrícolas/genética , Genómica/métodos , Sitios de Carácter Cuantitativo/genética , Sorghum/genética , Cromosomas de las Plantas/genética , Bases de Datos Genéticas , Carácter Cuantitativo Heredable
14.
Theor Appl Genet ; 132(7): 2055-2067, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-30968160

RESUMEN

KEY MESSAGE: The use of a kinship matrix integrating pedigree- and marker-based relationships optimized the performance of genomic prediction in sorghum, especially for traits of lower heritability. Selection based on genome-wide markers has become an active breeding strategy in crops. Genomic prediction models can make use of pedigree information to account for the residual polygenic effects not captured by markers. Our aim was to evaluate the impact of using pedigree and genomic information on prediction quality of breeding values for different traits in sorghum. We explored BLUP models that use weighted combinations of pedigree and genomic relationship matrices. The optimal weighting factor was empirically determined in order to maximize predictive ability after evaluating a range of candidate weights. The phenotypic data consisted of testcross evaluations of sorghum parental lines across multiple environments. All lines were genotyped, and full pedigree information was available. The performance of the best predictive combined matrix was compared to that of models fitting the component matrices independently. Model performance was assessed using cross-validation technique. Fitting a combined pedigree-genomic matrix with the optimal weight always yielded the largest increases in predictive ability and the largest reductions in prediction bias relative to the simple G-BLUP. However, the weight that optimized prediction varied across traits. The benefits of including pedigree information in the genomic model were more relevant for traits with lower heritability, such as grain yield and stay-green. Our results suggest that the combination of pedigree and genomic relatedness can be used to optimize predictions of complex traits in crops when the additive variation is not fully explained by markers.


Asunto(s)
Genómica/métodos , Modelos Genéticos , Linaje , Fitomejoramiento , Sorghum/genética , Genotipo , Fenotipo
15.
Plant Biotechnol J ; 14(12): 2240-2253, 2016 12.
Artículo en Inglés | MEDLINE | ID: mdl-27155090

RESUMEN

Next-generation sequencing of complete genomes has given researchers unprecedented levels of information to study the multifaceted evolutionary changes that have shaped elite plant germplasm. In conjunction with population genetic analytical techniques and detailed online databases, we can more accurately capture the effects of domestication on entire biological pathways of agronomic importance. In this study, we explore the genetic diversity and signatures of selection in all predicted gene models of the storage starch synthesis pathway of Sorghum bicolor, utilizing a diversity panel containing lines categorized as either 'Landraces' or 'Wild and Weedy' genotypes. Amongst a total of 114 genes involved in starch synthesis, 71 had at least a single signal of purifying selection and 62 a signal of balancing selection and others a mix of both. This included key genes such as STARCH PHOSPHORYLASE 2 (SbPHO2, under balancing selection), PULLULANASE (SbPUL, under balancing selection) and ADP-glucose pyrophosphorylases (SHRUNKEN2, SbSH2 under purifying selection). Effectively, many genes within the primary starch synthesis pathway had a clear reduction in nucleotide diversity between the Landraces and wild and weedy lines indicating that the ancestral effects of domestication are still clearly identifiable. There was evidence of the positional rate variation within the well-characterized primary starch synthesis pathway of sorghum, particularly in the Landraces, whereby low evolutionary rates upstream and high rates downstream in the metabolic pathway were expected. This observation did not extend to the wild and weedy lines or the minor starch synthesis pathways.


Asunto(s)
Genoma de Planta/genética , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Sorghum/genética , Sorghum/metabolismo , Almidón/metabolismo
16.
Theor Appl Genet ; 128(9): 1765-75, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26024715

RESUMEN

KEY MESSAGE: The potential for exploiting heterosis for sorghum hybrid production in Ethiopia with improved local adaptation and farmers preferences has been investigated and populations suitable for initial hybrid development have been identified. Hybrids in sorghum have demonstrated increased productivity and stability of performance in the developed world. In Ethiopia, the uptake of hybrid sorghum has been limited to date, primarily due to poor adaptation and absence of farmer's preferred traits in existing hybrids. This study aimed to identify complementary parental pools to develop locally adapted hybrids, through an analysis of whole genome variability of 184 locally adapted genotypes and introduced hybrid parents (R and B). Genetic variability was assessed using genetic distance, model-based STRUCTURE analysis and pair-wise comparison of groups. We observed a high degree of genetic similarity between the Ethiopian improved inbred genotypes and a subset of landraces adapted to lowland agro-ecology with the introduced R lines. This coupled with the genetic differentiation from existing B lines, indicated that these locally adapted genotype groups are expected to have similar patterns of heterotic expression as observed between introduced R and B line pools. Additionally, the hybrids derived from these locally adapted genotypes will have the benefit of containing farmers preferred traits. The groups most divergent from introduced B lines were the Ethiopian landraces adapted to highland and intermediate agro-ecologies and a subset of lowland-adapted genotypes, indicating the potential for increased heterotic response of their hybrids. However, these groups were also differentiated from the R lines, and hence are different from the existing complementary heterotic pools. This suggests that although these groups could provide highly divergent parental pools, further research is required to investigate the extent of heterosis and their hybrid performance.


Asunto(s)
Vigor Híbrido , Hibridación Genética , Fitomejoramiento , Sorghum/genética , Adaptación Biológica/genética , ADN de Plantas/genética , Etiopía , Genética de Población , Genoma de Planta , Genotipo , Secuenciación de Nucleótidos de Alto Rendimiento , Modelos Genéticos , Análisis de Secuencia de ADN
17.
Theor Appl Genet ; 128(9): 1813-25, 2015 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-26071275

RESUMEN

We detected seven QTLs for 100-grain weight in sorghum using an F 2 population, and delimited qGW1 to a 101-kb region on the short arm of chromosome 1, which contained 13 putative genes. Sorghum is one of the most important cereal crops. Breeding high-yielding sorghum varieties will have a profound impact on global food security. Grain weight is an important component of grain yield. It is a quantitative trait controlled by multiple quantitative trait loci (QTLs); however, the genetic basis of grain weight in sorghum is not well understood. In the present study, using an F2 population derived from a cross between the grain sorghum variety SA2313 (Sorghum bicolor) and the Sudan-grass variety Hiro-1 (S. bicolor), we detected seven QTLs for 100-grain weight. One of them, qGW1, was detected consistently over 2 years and contributed between 20 and 40 % of the phenotypic variation across multiple genetic backgrounds. Using extreme recombinants from a fine-mapping F3 population, we delimited qGW1 to a 101-kb region on the short arm of chromosome 1, containing 13 predicted gene models, one of which was found to be under purifying selection during domestication. However, none of the grain size candidate genes shared sequence similarity with previously cloned grain weight-related genes from rice. This study will facilitate isolation of the gene underlying qGW1 and advance our understanding of the regulatory mechanisms of grain weight. SSR markers linked to the qGW1 locus can be used for improving sorghum grain yield through marker-assisted selection.


Asunto(s)
Mapeo Cromosómico , Sitios de Carácter Cuantitativo , Semillas/crecimiento & desarrollo , Sorghum/genética , Cromosomas de las Plantas , Productos Agrícolas/genética , ADN de Plantas/genética , Grano Comestible/genética , Genes de Plantas , Marcadores Genéticos , Fenotipo , Fitomejoramiento
18.
Theor Appl Genet ; 128(3): 489-99, 2015 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-25575837

RESUMEN

KEY MESSAGE: Evaluation of resistance to Pyrenophora teres f. maculata in barley breeding populations via association mapping revealed a complex genetic architecture comprising a mixture of major and minor effect genes. In the search for stable resistance to spot form of net blotch (Pyrenophora teres f. maculata, SFNB), association mapping was conducted on four independent barley (Hordeum vulgare L.) breeding populations comprising a total of 898 unique elite breeding lines from the Northern Region Barley Breeding Program in Australia for discovery of quantitative trait loci (QTL) influencing resistance at seedling and adult plant growth stages. A total of 29 significant QTL were validated across multiple breeding populations, with 22 conferring resistance at both seedling and adult plant growth stages. The remaining 7 QTL conferred resistance at either seedling (2 QTL) or adult plant (5 QTL) growth stages only. These 29 QTL represented 24 unique genomic regions, of which five were found to co-locate with previously identified QTL for SFNB. The results indicated that SFNB resistance is controlled by a large number of QTL varying in effect size with large effects QTL on chromosome 7H. A large proportion of the QTL acted in the same direction for both seedling and adult responses, suggesting that phenotypic selection for SFNB resistance performed at either growth stage could achieve adequate levels of resistance. However, the accumulation of specific resistance alleles on several chromosomes must be considered in molecular breeding selection strategies.


Asunto(s)
Ascomicetos , Resistencia a la Enfermedad/genética , Hordeum/genética , Sitios de Carácter Cuantitativo , Cruzamiento , Mapeo Cromosómico , Cromosomas de las Plantas , Genes de Plantas , Genotipo , Hordeum/microbiología , Desequilibrio de Ligamiento , Fenotipo , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/microbiología
19.
BMC Plant Biol ; 14: 366, 2014 Dec 31.
Artículo en Inglés | MEDLINE | ID: mdl-25551674

RESUMEN

BACKGROUND: Agriculture is facing enormous challenges to feed a growing population in the face of rapidly evolving pests and pathogens. The rusts, in particular, are a major pathogen of cereal crops with the potential to cause large reductions in yield. Improving stable disease resistance is an on-going major and challenging focus for many plant breeding programs, due to the rapidly evolving nature of the pathogen. Sorghum is a major summer cereal crop that is also a host for a rust pathogen Puccinia purpurea, which occurs in almost all sorghum growing areas of the world, causing direct and indirect yield losses in sorghum worldwide, however knowledge about its genetic control is still limited. In order to further investigate this issue, QTL and association mapping methods were implemented to study rust resistance in three bi-parental populations and an association mapping set of elite breeding lines in different environments. RESULTS: In total, 64 significant or highly significant QTL and 21 suggestive rust resistance QTL were identified representing 55 unique genomic regions. Comparisons across populations within the current study and with rust QTL identified previously in both sorghum and maize revealed a high degree of correspondence in QTL location. Negative phenotypic correlations were observed between rust, maturity and height, indicating a trend for both early maturing and shorter genotypes to be more susceptible to rust. CONCLUSIONS: The significant amount of QTL co-location across traits, in addition to the consistency in the direction of QTL allele effects, has provided evidence to support pleiotropic QTL action across rust, height, maturity and stay-green, supporting the role of carbon stress in susceptibility to rust. Classical rust resistance QTL regions that did not co-locate with height, maturity or stay-green QTL were found to be significantly enriched for the defence-related NBS-encoding gene family, in contrast to the lack of defence-related gene enrichment in multi-trait effect rust resistance QTL. The distinction of disease resistance QTL hot-spots, enriched with defence-related gene families from QTL which impact on development and partitioning, provides plant breeders with knowledge which will allow for fast-tracking varieties with both durable pathogen resistance and appropriate adaptive traits.


Asunto(s)
Hongos/patogenicidad , Sitios de Carácter Cuantitativo , Sorghum/genética , Sorghum/microbiología , Sorghum/inmunología
20.
BMC Plant Biol ; 14: 253, 2014 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-25928459

RESUMEN

BACKGROUND: Increased disease resistance is a key target of cereal breeding programs, with disease outbreaks continuing to threaten global food production, particularly in Africa. Of the disease resistance gene families, the nucleotide-binding site plus leucine-rich repeat (NBS-LRR) family is the most prevalent and ancient and is also one of the largest gene families known in plants. The sequence diversity in NBS-encoding genes was explored in sorghum, a critical food staple in Africa, with comparisons to rice and maize and with comparisons to fungal pathogen resistance QTL. RESULTS: In sorghum, NBS-encoding genes had significantly higher diversity in comparison to non NBS-encoding genes and were significantly enriched in regions of the genome under purifying and balancing selection, both through domestication and improvement. Ancestral genes, pre-dating species divergence, were more abundant in regions with signatures of selection than in regions not under selection. Sorghum NBS-encoding genes were also significantly enriched in the regions of the genome containing fungal pathogen disease resistance QTL; with the diversity of the NBS-encoding genes influenced by the type of co-locating biotic stress resistance QTL. CONCLUSIONS: NBS-encoding genes are under strong selection pressure in sorghum, through the contrasting evolutionary processes of purifying and balancing selection. Such contrasting evolutionary processes have impacted ancestral genes more than species-specific genes. Fungal disease resistance hot-spots in the genome, with resistance against multiple pathogens, provides further insight into the mechanisms that cereals use in the "arms race" with rapidly evolving pathogens in addition to providing plant breeders with selection targets for fast-tracking the development of high performing varieties with more durable pathogen resistance.


Asunto(s)
Resistencia a la Enfermedad/genética , Evolución Molecular , Sorghum/genética , Familia de Multigenes , Polimorfismo Genético , Sorghum/inmunología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA