Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(16): 4203-4219.e32, 2021 08 05.
Artículo en Inglés | MEDLINE | ID: mdl-34242577

RESUMEN

SARS-CoV-2-neutralizing antibodies (NAbs) protect against COVID-19. A concern regarding SARS-CoV-2 antibodies is whether they mediate disease enhancement. Here, we isolated NAbs against the receptor-binding domain (RBD) or the N-terminal domain (NTD) of SARS-CoV-2 spike from individuals with acute or convalescent SARS-CoV-2 or a history of SARS-CoV infection. Cryo-electron microscopy of RBD and NTD antibodies demonstrated function-specific modes of binding. Select RBD NAbs also demonstrated Fc receptor-γ (FcγR)-mediated enhancement of virus infection in vitro, while five non-neutralizing NTD antibodies mediated FcγR-independent in vitro infection enhancement. However, both types of infection-enhancing antibodies protected from SARS-CoV-2 replication in monkeys and mice. Three of 46 monkeys infused with enhancing antibodies had higher lung inflammation scores compared to controls. One monkey had alveolar edema and elevated bronchoalveolar lavage inflammatory cytokines. Thus, while in vitro antibody-enhanced infection does not necessarily herald enhanced infection in vivo, increased lung inflammation can rarely occur in SARS-CoV-2 antibody-infused macaques.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , SARS-CoV-2/fisiología , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Antivirales/inmunología , Líquido del Lavado Bronquioalveolar/química , COVID-19/patología , COVID-19/virología , Citocinas/metabolismo , Femenino , Haplorrinos , Humanos , Pulmón/patología , Pulmón/virología , Masculino , Ratones , Ratones Endogámicos BALB C , Dominios Proteicos , ARN Guía de Kinetoplastida/metabolismo , Receptores de IgG/metabolismo , SARS-CoV-2/aislamiento & purificación , Glicoproteína de la Espiga del Coronavirus/química , Carga Viral , Replicación Viral
2.
Cell ; 162(6): 1217-28, 2015 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-26321681

RESUMEN

Activated T cells engage aerobic glycolysis and anabolic metabolism for growth, proliferation, and effector functions. We propose that a glucose-poor tumor microenvironment limits aerobic glycolysis in tumor-infiltrating T cells, which suppresses tumoricidal effector functions. We discovered a new role for the glycolytic metabolite phosphoenolpyruvate (PEP) in sustaining T cell receptor-mediated Ca(2+)-NFAT signaling and effector functions by repressing sarco/ER Ca(2+)-ATPase (SERCA) activity. Tumor-specific CD4 and CD8 T cells could be metabolically reprogrammed by increasing PEP production through overexpression of phosphoenolpyruvate carboxykinase 1 (PCK1), which bolstered effector functions. Moreover, PCK1-overexpressing T cells restricted tumor growth and prolonged the survival of melanoma-bearing mice. This study uncovers new metabolic checkpoints for T cell activity and demonstrates that metabolic reprogramming of tumor-reactive T cells can enhance anti-tumor T cell responses, illuminating new forms of immunotherapy.


Asunto(s)
Linfocitos T CD4-Positivos/inmunología , Linfocitos Infiltrantes de Tumor/inmunología , Melanoma/inmunología , Melanoma/terapia , Monitorización Inmunológica , Fosfoenolpiruvato/metabolismo , Microambiente Tumoral , Animales , Calcio/metabolismo , Retículo Endoplásmico/metabolismo , Glucólisis , Hexoquinasa/metabolismo , Inmunoterapia , Ratones , Factores de Transcripción NFATC/metabolismo , Receptores de Antígenos de Linfocitos T/metabolismo , ATPasas Transportadoras de Calcio del Retículo Sarcoplásmico/metabolismo , Transducción de Señal , Factor de Crecimiento Transformador beta/inmunología
3.
Proc Natl Acad Sci U S A ; 120(44): e2306465120, 2023 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-37871214

RESUMEN

Nucleic acid vaccines have shown promising results in the clinic against infectious diseases and cancers. To robustly improve the vaccine efficacy and safety, we developed an approach to increase the intracellular stability of nucleic acids by transiently inhibiting lysosomal function in targeted tissues using sucrose. To achieve efficient and localized delivery of sucrose in animals, we designed a biomimetic lipid nanoparticle (LNP) to target the delivery of sucrose into mouse muscle cells. Using this approach, viral antigen expression in mouse muscle after DNA vaccination was substantially increased and prolonged without inducing local or systemic inflammation or toxicity. The same change in antigen expression would be achieved if the vaccine dose could be increased by 3,000 folds, which is experimentally and clinically impractical due to material restrictions and severe toxicity that will be induced by such a high dose of nucleic acids. The increase in antigen expression augmented the infiltration and activation of antigen-presenting cells, significantly improved vaccine-elicited humoral and T cell responses, and fully protected mice against the viral challenge at a low dose of vaccine. Based on these observations, we conclude that transient inhibition of lysosome function in target tissue by sucrose LNPs is a safe and potent approach to substantially improve nucleic acid-based vaccines.


Asunto(s)
Nanopartículas , Ácidos Nucleicos , Vacunas de ADN , Vacunas , Animales , Ratones , Vacunación Basada en Ácidos Nucleicos , Lisosomas , Sacarosa
4.
Proc Natl Acad Sci U S A ; 120(50): e2122178120, 2023 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-38051771

RESUMEN

Thrombocytopenia, hemorrhage, anemia, and infection are life-threatening issues following accidental or intentional radiation exposure. Since few therapeutics are available, safe and efficacious small molecules to mitigate radiation-induced injury need to be developed. Our previous study showed the synthetic TLR2/TLR6 ligand fibroblast stimulating lipopeptide (FSL-1) prolonged survival and provided MyD88-dependent mitigation of hematopoietic acute radiation syndrome (H-ARS) in mice. Although mice and humans differ in TLR number, expression, and function, nonhuman primate (NHP) TLRs are like those of humans; therefore, studying both animal models is critical for drug development. The objectives of this study were to determine the efficacy of FSL-1 on hematopoietic recovery in small and large animal models subjected to sublethal total body irradiation and investigate its mechanism of action. In mice, we demonstrate a lack of adverse effects, an easy route of delivery (subcutaneous) and efficacy in promoting hematopoietic progenitor cell proliferation by FSL-1. NHP given radiation, followed a day later with a single subcutaneous administration of FSL-1, displayed no adversity but showed elevated hematopoietic cells. Our analyses revealed that FSL-1 promoted red blood cell development and induced soluble effectors following radiation exposure. Cytologic analysis of bone marrow aspirates revealed a striking enhancement of mononuclear progenitor cells in FSL-1-treated NHP. Combining the efficacy of FSL-1 in promoting hematopoietic cell recovery with the lack of adverse effects induced by a single administration supports the application of FSL-1 as a viable countermeasure against H-ARS.


Asunto(s)
Síndrome de Radiación Aguda , Receptor Toll-Like 2 , Humanos , Ratones , Animales , Receptor Toll-Like 6 , Ligandos , Síndrome de Radiación Aguda/tratamiento farmacológico , Primates , Fibroblastos
5.
J Infect Dis ; 2024 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-38526341

RESUMEN

There is an urgent need for vaccines against Neisseria gonorrhoeae (Ng), the causative agent of gonorrhea. Vaccination with an outer-membrane vesicle (OMV)-based Neisseria meningitidis (Nm) vaccine provides some protection from Ng; however, the mechanisms underlying this cross-protection are unknown. To address this need, we developed multiplexed bead-based assays for the relative quantification of human and mouse IgG and IgA against Ng antigens. The assays were evaluated for analyte independence, dilutional linearity, specificity, sensitivity, intra- and inter-assay variability, and robustness to sample storage conditions. The assay was then used to test samples from mice and humans immunized with an Nm-OMV vaccine.

6.
Sex Transm Dis ; 51(2): 112-117, 2024 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-38290156

RESUMEN

ABSTRACT: Chlamydia trachomatis (CT) is the most commonly reported sexually transmitted infection in the United States. Untreated urogenital infection in women can result in adverse sequelae such as pelvic inflammatory disease and infertility. Despite national screening and treatment guidelines, rates continue to rise; because most infections are asymptomatic, the actual prevalence of CT infection is likely significantly higher than reported. Spontaneous clearance of CT in women (in the absence of antibiotic treatment) has been described in multiple epidemiologic studies. Given the serious consequences and high prevalence of CT infection, there is growing interest in understanding this phenomenon and factors that may promote CT clearance in women. Spontaneous CT clearance is likely the result of complex interactions between CT, the host immune system, and the vaginal microbiota (i.e., the communities of bacteria inhabiting the vagina), which has been implicated in CT acquisition. Herein, we briefly review current literature regarding the role of each of these factors in spontaneous CT clearance, identify knowledge gaps, and discuss future directions and possible implications for the development of novel interventions that may protect against CT infection, facilitate clearance, and prevent reproductive sequelae.


Asunto(s)
Infecciones por Chlamydia , Microbiota , Enfermedades de Transmisión Sexual , Humanos , Femenino , Chlamydia trachomatis , Enfermedades de Transmisión Sexual/microbiología , Infecciones por Chlamydia/epidemiología , Vagina/microbiología
7.
J Infect Dis ; 225(4): 650-660, 2022 02 15.
Artículo en Inglés | MEDLINE | ID: mdl-34498079

RESUMEN

BACKGROUND: Despite decades of research efforts, development of a gonorrhea vaccine has remained elusive. Epidemiological studies suggest that detoxified outer membrane vesicle (dOMV) vaccines from Neisseria meningitidis (Nm) may protect against infection with Neisseria gonorrhoeae (Ng). We recently reported that Nm dOMVs lacking the major outer membrane proteins (OMPs) PorA, PorB, and RmpM induced greater antibody cross-reactivity against heterologous Nm strains than wild-type (WT) dOMVs and may represent an improved vaccine against gonorrhea. METHODS: We prepared dOMV vaccines from meningococcal strains that were sufficient or deleted for PorA, PorB, and RmpM. Vaccines were tested in a murine genital tract infection model and antisera were used to identify vaccine targets. RESULTS: Immunization with Nm dOMVs significantly and reproducibly enhanced gonococcal clearance for mice immunized with OMP-deficient dOMVs; significant clearance for WT dOMV-immunized mice was observed in one of two experiments. Clearance was associated with serum and vaginal anti-Nm dOMV immunoglobulin G (IgG) antibodies that cross-reacted with Ng. Serum IgG was used to identify putative Ng vaccine targets, including PilQ, MtrE, NlpD, and GuaB. CONCLUSIONS: Meningococcal dOMVs elicited a protective effect against experimental gonococcal infection. Recognition and identification of Ng vaccine targets by Nm dOMV-induced antibodies supports the development of a cross-protective Neisseria vaccine.


Asunto(s)
Gonorrea , Vacunas Meningococicas , Neisseria meningitidis , Animales , Anticuerpos Antibacterianos , Antígenos Bacterianos , Proteínas de la Membrana Bacteriana Externa , Vacunas Bacterianas , Femenino , Gonorrea/prevención & control , Inmunoglobulina G , Ratones , Neisseria gonorrhoeae
8.
PLoS Pathog ; 16(12): e1008602, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33290434

RESUMEN

There is a pressing need for a gonorrhea vaccine due to the high disease burden associated with gonococcal infections globally and the rapid evolution of antibiotic resistance in Neisseria gonorrhoeae (Ng). Current gonorrhea vaccine research is in the stages of antigen discovery and the identification of protective immune responses, and no vaccine has been tested in clinical trials in over 30 years. Recently, however, it was reported in a retrospective case-control study that vaccination of humans with a serogroup B Neisseria meningitidis (Nm) outer membrane vesicle (OMV) vaccine (MeNZB) was associated with reduced rates of gonorrhea. Here we directly tested the hypothesis that Nm OMVs induce cross-protection against gonorrhea in a well-characterized female mouse model of Ng genital tract infection. We found that immunization with the licensed Nm OMV-based vaccine 4CMenB (Bexsero) significantly accelerated clearance and reduced the Ng bacterial burden compared to administration of alum or PBS. Serum IgG and vaginal IgA and IgG that cross-reacted with Ng OMVs were induced by 4CMenB vaccination by either the subcutaneous or intraperitoneal routes. Antibodies from vaccinated mice recognized several Ng surface proteins, including PilQ, BamA, MtrE, NHBA (known to be recognized by humans), PorB, and Opa. Immune sera from both mice and humans recognized Ng PilQ and several proteins of similar apparent molecular weight, but MtrE was only recognized by mouse serum. Pooled sera from 4CMenB-immunized mice showed a 4-fold increase in serum bactericidal50 titers against the challenge strain; in contrast, no significant difference in bactericidal activity was detected when sera from 4CMenB-immunized and unimmunized subjects were compared. Our findings directly support epidemiological evidence that Nm OMVs confer cross-species protection against gonorrhea, and implicate several Ng surface antigens as potentially protective targets. Additionally, this study further defines the usefulness of murine infection model as a relevant experimental system for gonorrhea vaccine development.


Asunto(s)
Protección Cruzada/inmunología , Vacunas Meningococicas/farmacología , Neisseria gonorrhoeae/inmunología , Animales , Antígenos Bacterianos/inmunología , Proteínas de la Membrana Bacteriana Externa/inmunología , Vacunas Bacterianas/inmunología , Estudios de Casos y Controles , Reacciones Cruzadas/inmunología , Femenino , Gonorrea/inmunología , Humanos , Sueros Inmunes/inmunología , Inmunización/métodos , Masculino , Infecciones Meningocócicas/microbiología , Vacunas Meningococicas/inmunología , Vacunas Meningococicas/metabolismo , Ratones , Ratones Endogámicos BALB C , Neisseria meningitidis/inmunología , Neisseria meningitidis Serogrupo B/inmunología , Estudios Retrospectivos , Serogrupo , Vacunación/métodos
9.
J Infect Dis ; 224(12 Suppl 2): S152-S160, 2021 08 16.
Artículo en Inglés | MEDLINE | ID: mdl-34396408

RESUMEN

Murine models of Neisseria gonorrhoeae lower reproductive tract infection are valuable systems for studying N. gonorrhoeae adaptation to the female host and immune responses to infection. These models have also accelerated preclinical testing of candidate therapeutic and prophylactic products against gonorrhea. However, because N. gonorrhoeae infection is restricted to the murine cervicovaginal region, there is a need for an in vivo system for translational work on N. gonorrhoeae pelvic inflammatory disease (PID). Here we discuss the need for well-characterized preclinical upper reproductive tract infection models for developing candidate products against N. gonorrhoeae PID, and report a refinement of the gonorrhea mouse model that supports sustained upper reproductive tract infection. To establish this new model for vaccine testing, we also tested the licensed meningococcal 4CMenB vaccine, which cross-protects against murine N. gonorrhoeae lower reproductive tract infection, for efficacy against N. gonorrhoeae in the endometrium and oviducts following transcervical or vaginal challenge.


Asunto(s)
Antiinfecciosos/administración & dosificación , Gonorrea/prevención & control , Enfermedad Inflamatoria Pélvica/prevención & control , Infecciones del Sistema Genital/microbiología , Animales , Modelos Animales de Enfermedad , Femenino , Gonorrea/tratamiento farmacológico , Ratones , Neisseria gonorrhoeae/inmunología , Enfermedad Inflamatoria Pélvica/microbiología
10.
Am J Transplant ; 21(6): 2113-2122, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33131212

RESUMEN

We undertook a prospective, matched cohort study of patients with Staphylococcus aureus bacteremia (SAB) and gram-negative bacteremia (GNB) to compare the characteristics, outcomes, and chemokine and cytokine response in transplant recipients to immunocompetent, nontransplant recipients. Fifty-five transplant recipients (GNB n = 29; SAB n = 26) and 225 nontransplant recipients (GNB n = 114; SAB n = 111) were included for clinical analysis. Transplant GNB had a significantly lower incidence of septic shock than nontransplant GNB (10.3% vs 30.7%, p = .03). Thirty-day mortality did not differ significantly between transplant and nontransplant recipients with GNB (10.3% vs 15.8%, p = .57) or SAB (0.0% vs 11.7%, p = .13). Next, transplant patients were matched 1:1 with nontransplant patients for the chemokine and cytokine analysis. Five cytokines and chemokines were significantly lower in transplant GNB vs nontransplant GNB: IL-2 (median [IQR]: 7.1 pg/ml [7.1, 7.1] vs 32.6 pg/ml [7.1, 88.0]; p = .001), MIP-1ß (30.7 pg/ml [30.7, 30.7] vs 243.3 pg/ml [30.7, 344.4]; p = .001), IL-8 (32.0 pg/ml [5.6, 53.1] vs 59.1 pg/ml [39.2, 119.4]; p = .003), IL-15 (12.0 pg/ml [12.0, 12.0] vs 12.0 pg/ml [12.0, 126.7]; p = .03), and IFN-α (5.1 pg/mL [5.1, 5.1] vs 5.1 pg/ml [5.1, 26.3]; p = .04). Regulated upon Activation, Normal T Cell Expressed and Secreted (RANTES) was higher in transplant SAB vs nontransplant SAB (mean [SD]: 750.2 pg/ml [194.6] vs 656.5 pg/ml [147.6]; p = .046).


Asunto(s)
Bacteriemia , Trasplante de Órganos , Bacteriemia/etiología , Estudios de Cohortes , Citocinas , Humanos , Estudios Prospectivos , Receptores de Trasplantes
11.
BMC Infect Dis ; 21(1): 973, 2021 Sep 18.
Artículo en Inglés | MEDLINE | ID: mdl-34537015

RESUMEN

BACKGROUND: Limited data suggest that personal lubricants may damage the vaginal mucosal epithelium, alter the vaginal microbiota, and increase inflammation. We compared vaginal cytokine profiles and microbiota before and after vaginal lubricant use and condomless vaginal sex. METHODS: Reproductive-age women were recruited to a 10-week observational cohort study and were asked to self-collect vaginal samples and behavioral diaries daily. This nested case-control analysis utilized samples collected before and after self-reported condomless sexual activity with lubricants (22 case participants) and without lubricants (22 control participants). Controls were matched to cases on race/ethnicity. Microbiota composition was characterized by sequencing amplicons of the 16S rRNA gene V3-V4 regions. Cytokine concentrations were quantified using a magnetic bead 41-plex panel assay and read using a Bio-Plex 200 array reader. Wilcoxon signed-rank tests were used to assess baseline differences in vaginal cytokines between cases and controls as well as differences pre- and post-exposure. Linear mixed effects models were used to examine differences in relative post-to-pre change in each individual cytokine between matched cases and controls. Similar analyses were conducted for the microbiota data. RESULTS: Mean age was 29.8 years (SD 6.8), and 63.6% were African American. There were few statistically significant changes in cytokines or microbiota before and after exposure in cases or controls. In mixed-effects modeling, the mean relative post-to-pre change of cytokines was higher in cases vs. controls for macrophage derived chemokine (MDC) (p = 0.03). The microbiota data revealed no significant changes when measured by similarity scores, diversity indexes and descriptive community state types (CST) transition analyses. However, post sexual activity, the mean relative abundance of L. crispatus decreased for those who used lubricants (particularly those who were L. iners-dominated prior to exposure). CONCLUSIONS: Although there were overall few differences in the vaginal microbiota and cytokine profiles of lubricant users and controls before and after condomless vaginal sex, there was a trend toward decreases in relative abundance of L. crispatus following use of lubricant. Future larger studies that take into account osmolarity and composition of lubricants may provide additional insights.


Asunto(s)
Lubricantes , Microbiota , Adulto , Citocinas , Femenino , Humanos , ARN Ribosómico 16S/genética , Vagina
12.
Immunity ; 34(2): 224-36, 2011 Feb 25.
Artículo en Inglés | MEDLINE | ID: mdl-21295499

RESUMEN

In cytotoxic T cells (CTL), Akt, also known as protein kinase B, is activated by the T cell antigen receptor (TCR) and the cytokine interleukin 2 (IL-2). Akt can control cell metabolism in many cell types but whether this role is important for CTL function has not been determined. Here we have shown that Akt does not mediate IL-2- or TCR-induced cell metabolic responses; rather, this role is assumed by other Akt-related kinases. There is, however, a nonredundant role for sustained and strong activation of Akt in CTL to coordinate the TCR- and IL-2-induced transcriptional programs that control expression of key cytolytic effector molecules, adhesion molecules, and cytokine and chemokine receptors that distinguish effector versus memory and naive T cells. Akt is thus dispensable for metabolism, but the strength and duration of Akt activity dictates the CTL transcriptional program and determines CTL fate.


Asunto(s)
Regulación de la Expresión Génica , Proteínas Serina-Treonina Quinasas/fisiología , Proteínas Proto-Oncogénicas c-akt/fisiología , Linfocitos T Citotóxicos/inmunología , Transcripción Genética , Proteínas Quinasas Dependientes de 3-Fosfoinosítido , Adenina/análogos & derivados , Adenina/farmacología , Animales , División Celular , Movimiento Celular , Fosfatidilinositol 3-Quinasa Clase I , Citotoxicidad Inmunológica , Glucosa/metabolismo , Interferón gamma/biosíntesis , Interferón gamma/genética , Interleucina-2/farmacología , Interleucina-2/fisiología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Fenilalanina/metabolismo , Fosfatidilinositol 3-Quinasas/fisiología , Inhibidores de las Quinasa Fosfoinosítidos-3 , Proteínas Citotóxicas Formadoras de Poros/biosíntesis , Proteínas Citotóxicas Formadoras de Poros/genética , Quinazolinas/farmacología , Receptores de Antígenos de Linfocitos T/inmunología , Receptores de Citocinas/biosíntesis , Receptores de Citocinas/genética , Linfocitos T Citotóxicos/metabolismo
13.
Mol Cell ; 42(6): 713-4, 2011 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-21700216

RESUMEN

In this issue of Molecular Cell, Lv et al. (2011) identify a novel feedback mechanism in which increased glycolysis induces the acetylation and chaperone-mediated autophagic degradation of the glycolytic regulator PKM2, revealing a novel metabolic feedback loop that drives tumor growth.

14.
Mol Pharm ; 15(11): 4933-4946, 2018 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-30281314

RESUMEN

Vaccines are the most effective tool for preventing infectious diseases; however, subunit vaccines, considered the safest type, suffer from poor immunogenicity and require adjuvants to create a strong and sustained immune response. As adjuvants, pathogen-associated molecular patterns (PAMPs) offer potent immunostimulatory properties and defined mechanisms of action through their cognate pattern recognition receptors (PRRs). Their activity can be further enhanced through combining two or more PAMPs, particularly those that activate multiple immune signaling pathways. However, the cytosolic localization of many PRRs requires intracellular delivery of PAMPs for optimal biological activity, which is particularly true of the stimulator of interferon genes (STING) PRR. Using acetalated dextran (Ace-DEX) microparticles (MPs) encapsulating STING agonist 3'3'-cyclic GMP-AMP (cGAMP) combined with soluble PAMPS, we screened the effect of codelivery of adjuvants using primary mouse bone marrow derived dendritic cells (BMDCs). We identified that codelivery of cGAMP MPs and soluble Toll-like receptor 7/8 (TLR7/8) agonist resiquimod (R848) elicited the broadest cytokine response. cGAMP and R848 were then coencapsulated within Ace-DEX MPs via electrospray. Using the model antigen ovalbumin, we observed that Ace-DEX MPs coencapsulating cGAMP and R848 (cGAMP/R848 Ace-DEX MPs) induced antigen-specific cellular immunity, and a balanced Th1/Th2 humoral response that was greater than cGAMP Ace-DEX MPs alone and PAMPs delivered in separate MPs. These data indicate that polymeric Ace-DEX MPs loaded with STING and TLR7/8 agonists represent a potent cellular and humoral vaccine adjuvant.


Asunto(s)
Adyuvantes Inmunológicos/administración & dosificación , Portadores de Fármacos/química , Composición de Medicamentos/métodos , Moléculas de Patrón Molecular Asociado a Patógenos/administración & dosificación , Acetilación , Animales , Células Cultivadas , Células Dendríticas , Dextranos/química , Femenino , Imidazoles/administración & dosificación , Inmunidad Celular/efectos de los fármacos , Inmunogenicidad Vacunal , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Animales , Nucleótidos Cíclicos/administración & dosificación , Moléculas de Patrón Molecular Asociado a Patógenos/inmunología , Cultivo Primario de Células , Receptores de Reconocimiento de Patrones/antagonistas & inhibidores , Receptores de Reconocimiento de Patrones/inmunología , Receptor Toll-Like 7/antagonistas & inhibidores , Receptor Toll-Like 7/inmunología , Receptor Toll-Like 8/antagonistas & inhibidores , Receptor Toll-Like 8/inmunología , Vacunas de Subunidad/administración & dosificación , Vacunas de Subunidad/inmunología
15.
Proc Natl Acad Sci U S A ; 110(6): 2300-5, 2013 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-23324740

RESUMEN

Increased understanding of the precise molecular mechanisms involved in cell survival and cell death signaling pathways offers the promise of harnessing these molecules to eliminate cancer cells without damaging normal cells. Tyrosine kinase oncoproteins promote the genesis of leukemias through both increased cell proliferation and inhibition of apoptotic cell death. Although tyrosine kinase inhibitors, such as the BCR-ABL inhibitor imatinib, have demonstrated remarkable efficacy in the clinic, drug-resistant leukemias emerge in some patients because of either the acquisition of point mutations or amplification of the tyrosine kinase, resulting in a poor long-term prognosis. Here, we exploit the molecular mechanisms of caspase activation and tyrosine kinase/adaptor protein signaling to forge a unique approach for selectively killing leukemic cells through the forcible induction of apoptosis. We have engineered caspase variants that can directly be activated in response to BCR-ABL. Because we harness, rather than inhibit, the activity of leukemogenic kinases to kill transformed cells, this approach selectively eliminates leukemic cells regardless of drug-resistant mutations.


Asunto(s)
Caspasas/genética , Caspasas/metabolismo , Proteínas de Fusión bcr-abl/metabolismo , Leucemia/tratamiento farmacológico , Leucemia/metabolismo , Animales , Antineoplásicos/farmacología , Apoptosis/efectos de los fármacos , Benzamidas , Caspasa 8/genética , Caspasa 8/metabolismo , Caspasa 8/uso terapéutico , Caspasas/uso terapéutico , Resistencia a Antineoplásicos , Activación Enzimática , Variación Genética , Células Madre Hematopoyéticas/citología , Células Madre Hematopoyéticas/efectos de los fármacos , Células Madre Hematopoyéticas/metabolismo , Humanos , Mesilato de Imatinib , Células K562 , Leucemia/patología , Ratones , Piperazinas/farmacología , Ingeniería de Proteínas , Inhibidores de Proteínas Quinasas/farmacología , Pirimidinas/farmacología , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas Recombinantes/uso terapéutico , Transducción Genética
16.
J Biol Chem ; 289(11): 7884-96, 2014 Mar 14.
Artículo en Inglés | MEDLINE | ID: mdl-24492615

RESUMEN

Glucose is a critical component in the proinflammatory response of macrophages (MΦs). However, the contribution of glucose transporters (GLUTs) and the mechanisms regulating subsequent glucose metabolism in the inflammatory response are not well understood. Because MΦs contribute to obesity-induced inflammation, it is important to understand how substrate metabolism may alter inflammatory function. We report that GLUT1 (SLC2A1) is the primary rate-limiting glucose transporter on proinflammatory-polarized MΦs. Furthermore, in high fat diet-fed rodents, MΦs in crown-like structures and inflammatory loci in adipose and liver, respectively, stain positively for GLUT1. We hypothesized that metabolic reprogramming via increased glucose availability could modulate the MΦ inflammatory response. To increase glucose uptake, we stably overexpressed the GLUT1 transporter in RAW264.7 MΦs (GLUT1-OE MΦs). Cellular bioenergetics analysis, metabolomics, and radiotracer studies demonstrated that GLUT1 overexpression resulted in elevated glucose uptake and metabolism, increased pentose phosphate pathway intermediates, with a complimentary reduction in cellular oxygen consumption rates. Gene expression and proteome profiling analysis revealed that GLUT1-OE MΦs demonstrated a hyperinflammatory state characterized by elevated secretion of inflammatory mediators and that this effect could be blunted by pharmacologic inhibition of glycolysis. Finally, reactive oxygen species production and evidence of oxidative stress were significantly enhanced in GLUT1-OE MΦs; antioxidant treatment blunted the expression of inflammatory mediators such as PAI-1 (plasminogen activator inhibitor 1), suggesting that glucose-mediated oxidative stress was driving the proinflammatory response. Our results indicate that increased utilization of glucose induced a ROS-driven proinflammatory phenotype in MΦs, which may play an integral role in the promotion of obesity-associated insulin resistance.


Asunto(s)
Transportador de Glucosa de Tipo 1/metabolismo , Glucosa/metabolismo , Inflamación/metabolismo , Macrófagos/citología , Tejido Adiposo/metabolismo , Animales , Transporte Biológico , Células de la Médula Ósea/citología , Células Cultivadas , Femenino , Regulación de la Expresión Génica , Glucosa/farmacocinética , Inmunohistoquímica , Hígado/metabolismo , Macrófagos/metabolismo , Masculino , Ratones , Ratones Endogámicos C57BL , Obesidad/metabolismo , Vía de Pentosa Fosfato , Fenotipo , Proteómica , Especies Reactivas de Oxígeno/metabolismo
17.
J Immunol Methods ; 531: 113699, 2024 May 31.
Artículo en Inglés | MEDLINE | ID: mdl-38823575

RESUMEN

Bead array assays, such as those sold by Luminex, BD Biosciences, Sartorius, Abcam and other companies, are a well-established platform for multiplexed quantification of cytokines and other biomarkers in both clinical and discovery research environments. In 2011, the National Institute of Allergy and Infectious Diseases (NIAID)-funded External Quality Assurance Program Oversight Laboratory (EQAPOL) established a proficiency assessment program to monitor participating laboratories performing multiplex cytokine measurements using Luminex bead array technology. During every assessment cycle, each site was sent an assay kit, a protocol, and blinded samples of human sera spiked with recombinant cytokines. Site results were then evaluated for performance relative to peer laboratories. After over a decade of biannual assessments, the cumulative dataset contained over 15,500 bead array observations collected at more than forty laboratories in twelve countries. These data were evaluated alongside post-assessment survey results to empirically test factors that may contribute to variability and accuracy in Luminex bead-based cytokine assays. Bead material, individual technical ability, analyte, analyte concentration, and assay kit vendor were identified as significant contributors to assay performance. In contrast, the bead reader instrument model and the use of automated plate washers were found not to contribute to variability or accuracy, and sample results were found to be highly-consistent between assay kit-manufacturing lots and over time. In addition to these statistical analyses, subjective evaluations identified technical ability, instrument failure, protocol adherence, and data transcription errors as the most common causes of poor performance in the proficiency program. The findings from the EQAPOL multiplex program were then used to develop recommended best practices for bead array monitoring of human cytokines. These included collecting samples to assay as a single batch, centralizing analysis, participating in a quality assurance program, and testing samples using paramagnetic-bead kits from a single manufacturer using a standardized protocol.

18.
Sci Transl Med ; 16(745): eadj4685, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38691617

RESUMEN

Current seasonal influenza virus vaccines induce responses primarily against immunodominant but highly plastic epitopes in the globular head of the hemagglutinin (HA) glycoprotein. Because of viral antigenic drift at these sites, vaccines need to be updated and readministered annually. To increase the breadth of influenza vaccine-mediated protection, we developed an antigenically complex mixture of recombinant HAs designed to redirect immune responses to more conserved domains of the protein. Vaccine-induced antibodies were disproportionally redistributed to the more conserved stalk of the HA without hindering, and in some cases improving, antibody responses against the head domain. These improved responses led to increased protection against homologous and heterologous viral challenges in both mice and ferrets compared with conventional vaccine approaches. Thus, antigenically complex protein mixtures can at least partially overcome HA head domain antigenic immunodominance and may represent a step toward a more universal influenza vaccine.


Asunto(s)
Hurones , Glicoproteínas Hemaglutininas del Virus de la Influenza , Vacunas contra la Influenza , Vacunación , Animales , Vacunas contra la Influenza/inmunología , Glicoproteínas Hemaglutininas del Virus de la Influenza/inmunología , Infecciones por Orthomyxoviridae/prevención & control , Infecciones por Orthomyxoviridae/inmunología , Ratones , Anticuerpos Antivirales/inmunología , Humanos , Gripe Humana/prevención & control , Gripe Humana/inmunología , Antígenos Virales/inmunología , Femenino , Ratones Endogámicos BALB C
19.
J Immunol ; 186(6): 3299-303, 2011 Mar 15.
Artículo en Inglés | MEDLINE | ID: mdl-21317389

RESUMEN

Stimulated CD4(+) T lymphocytes can differentiate into effector T cell (Teff) or inducible regulatory T cell (Treg) subsets with specific immunological roles. We show that Teff and Treg require distinct metabolic programs to support these functions. Th1, Th2, and Th17 cells expressed high surface levels of the glucose transporter Glut1 and were highly glycolytic. Treg, in contrast, expressed low levels of Glut1 and had high lipid oxidation rates. Consistent with glycolysis and lipid oxidation promoting Teff and Treg, respectively, Teff were selectively increased in Glut1 transgenic mice and reliant on glucose metabolism, whereas Treg had activated AMP-activated protein kinase and were dependent on lipid oxidation. Importantly, AMP-activated protein kinase stimulation was sufficient to decrease Glut1 and increase Treg generation in an asthma model. These data demonstrate that CD4(+) T cell subsets require distinct metabolic programs that can be manipulated in vivo to control Treg and Teff development in inflammatory diseases.


Asunto(s)
Glucólisis/inmunología , Peroxidación de Lípido/inmunología , Subgrupos de Linfocitos T/inmunología , Subgrupos de Linfocitos T/metabolismo , Linfocitos T Colaboradores-Inductores/inmunología , Linfocitos T Colaboradores-Inductores/metabolismo , Linfocitos T Reguladores/inmunología , Linfocitos T Reguladores/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Animales , Asma/inmunología , Asma/metabolismo , Asma/patología , Supervivencia Celular/genética , Supervivencia Celular/inmunología , Células Cultivadas , Modelos Animales de Enfermedad , Transportador de Glucosa de Tipo 1/antagonistas & inhibidores , Transportador de Glucosa de Tipo 1/genética , Transportador de Glucosa de Tipo 1/metabolismo , Inmunofenotipificación , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Subgrupos de Linfocitos T/citología , Linfocitos T Colaboradores-Inductores/citología , Linfocitos T Reguladores/enzimología , Serina-Treonina Quinasas TOR/metabolismo
20.
SLAS Technol ; 28(5): 361-368, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37120133

RESUMEN

The potential immunogenicity of therapeutic human and humanized monoclonal antibodies (mAb) is a significant concern, and so preclinical testing of therapeutic mAbs routinely includes assessment of anti-drug antibody (ADA) induction. Here, we report the development of automated screening and confirmatory bridging ELISAs for the detection of rat antibodies against DH1042, an engineered human mAb for the SARS-CoV-2 receptor-binding domain. The assays were evaluated for specificity, sensitivity, selectivity, absence of a prozone effect, linearity, intra- and inter- assay precision, and robustness, and found to be suitable for purpose. The assays were then used to evaluate anti-DH1042 antibodies in the sera of rats dosed with lipid-nanoparticle (LNP)-encapsulated mRNA encoding DH1042. Rats received two doses of 0.1, 0.4 or 0.6 mg/kg/dose LNP-mRNA 8 days apart. Twenty-one days after the second dose, 50-100% of rats had developed confirmed anti-DH1042 ADA depending on dose level. No animals in the control group developed anti-DH1042 ADA. These assays reflect new applications for a non-specialized laboratory automation platform, and the methodologies and approaches reported here provide a template that can be adapted for the automated detection and confirmation of ADA in preclinical testing of other biologics.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA