Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Annu Rev Biochem ; 89: 443-470, 2020 06 20.
Artículo en Inglés | MEDLINE | ID: mdl-32569525

RESUMEN

Manipulation of individual molecules with optical tweezers provides a powerful means of interrogating the structure and folding of proteins. Mechanical force is not only a relevant quantity in cellular protein folding and function, but also a convenient parameter for biophysical folding studies. Optical tweezers offer precise control in the force range relevant for protein folding and unfolding, from which single-molecule kinetic and thermodynamic information about these processes can be extracted. In this review, we describe both physical principles and practical aspects of optical tweezers measurements and discuss recent advances in the use of this technique for the study of protein folding. In particular, we describe the characterization of folding energy landscapes at high resolution, studies of structurally complex multidomain proteins, folding in the presence of chaperones, and the ability to investigate real-time cotranslational folding of a polypeptide.


Asunto(s)
Escherichia coli/genética , Chaperonas Moleculares/genética , Pinzas Ópticas , Biosíntesis de Proteínas , Proteoma/química , Ribosomas/genética , Escherichia coli/metabolismo , Humanos , Cinética , Microscopía de Fuerza Atómica , Modelos Moleculares , Chaperonas Moleculares/química , Chaperonas Moleculares/metabolismo , Unión Proteica , Pliegue de Proteína , Dominios y Motivos de Interacción de Proteínas , Proteoma/biosíntesis , Proteoma/genética , Proteostasis/genética , Ribosomas/metabolismo , Ribosomas/ultraestructura , Termodinámica
2.
Mol Cell ; 74(2): 310-319.e7, 2019 04 18.
Artículo en Inglés | MEDLINE | ID: mdl-30852061

RESUMEN

Multi-domain proteins, containing several structural units within a single polypeptide, constitute a large fraction of all proteomes. Co-translational folding is assumed to simplify the conformational search problem for large proteins, but the events leading to correctly folded, functional structures remain poorly characterized. Similarly, how the ribosome and molecular chaperones promote efficient folding remains obscure. Using optical tweezers, we have dissected early folding events of nascent elongation factor G, a multi-domain protein that requires chaperones for folding. The ribosome and the chaperone trigger factor reduce inter-domain misfolding, permitting folding of the N-terminal G-domain. Successful completion of this step is a crucial prerequisite for folding of the next domain. Unexpectedly, co-translational folding does not proceed unidirectionally; emerging unfolded polypeptide can denature an already-folded domain. Trigger factor, but not the ribosome, protects against denaturation. The chaperone thus serves a previously unappreciated function, helping multi-domain proteins overcome inherent challenges during co-translational folding.


Asunto(s)
Factor G de Elongación Peptídica/química , Biosíntesis de Proteínas , Conformación Proteica , Pliegue de Proteína , Chaperonas Moleculares/química , Chaperonas Moleculares/genética , Pinzas Ópticas , Factor G de Elongación Peptídica/genética , Péptidos/química , Péptidos/genética , Dominios Proteicos/genética , Proteoma/química , Proteoma/genética , Ribosomas/química , Ribosomas/genética
3.
J Cell Sci ; 136(5)2023 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-36861884

RESUMEN

The pathological accumulation of cholesterol is a signature feature of Niemann-Pick type C (NPC) disease, in which excessive lipid levels induce Purkinje cell death in the cerebellum. NPC1 encodes a lysosomal cholesterol-binding protein, and mutations in NPC1 drive cholesterol accumulation in late endosomes and lysosomes (LE/Ls). However, the fundamental role of NPC proteins in LE/L cholesterol transport remains unclear. Here, we demonstrate that NPC1 mutations impair the projection of cholesterol-containing membrane tubules from the surface of LE/Ls. A proteomic survey of purified LE/Ls identified StARD9 as a novel lysosomal kinesin responsible for LE/L tubulation. StARD9 contains an N-terminal kinesin domain, a C-terminal StART domain, and a dileucine signal shared with other lysosome-associated membrane proteins. Depletion of StARD9 disrupts LE/L tubulation, paralyzes bidirectional LE/L motility and induces accumulation of cholesterol in LE/Ls. Finally, a novel StARD9 knock-out mouse recapitulates the progressive loss of Purkinje cells in the cerebellum. Together, these studies identify StARD9 as a microtubule motor protein responsible for LE/L tubulation and provide support for a novel model of LE/L cholesterol transport that becomes impaired in NPC disease.


Asunto(s)
Cinesinas , Células de Purkinje , Animales , Ratones , Cinesinas/genética , Proteómica , Transporte Biológico , Lisosomas , Ratones Noqueados
4.
Bioessays ; 43(7): e2100042, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-33987870

RESUMEN

The coupling of protein synthesis and folding is a crucial yet poorly understood aspect of cellular protein folding. Over the past few years, it has become possible to experimentally follow and define protein folding on the ribosome, revealing principles that shape co-translational folding and distinguish it from refolding in solution. Here, we highlight some of these recent findings from biochemical and biophysical studies and their potential significance for cellular protein biogenesis. In particular, we focus on nascent chain interactions with the ribosome, interactions within the nascent protein, modulation of translation elongation rates, and the role of mechanical force that accompanies nascent protein folding. The ability to obtain mechanistic insight in molecular detail has set the stage for exploring the intricate process of nascent protein folding. We believe that the aspects discussed here will be generally important for understanding how protein synthesis and folding are coupled and regulated.


Asunto(s)
Pliegue de Proteína , Ribosomas , Péptidos/genética , Biosíntesis de Proteínas , Proteínas/metabolismo , Ribosomas/metabolismo
5.
Biophys J ; 120(13): 2691-2700, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-33989618

RESUMEN

Single-molecule force spectroscopy with optical tweezers has emerged as a powerful tool for dissecting protein folding. The requirement to stably attach "molecular handles" to specific points in the protein of interest by preparative biochemical techniques is a limiting factor in applying this methodology, especially for large or unstable proteins that are difficult to produce and isolate. Here, we present a streamlined approach for creating stable and specific attachments using autocatalytic covalent tethering. The high specificity of coupling allowed us to tether ribosome-nascent chain complexes, demonstrating its suitability for investigating complex macromolecular assemblies. We combined this approach with cell-free protein synthesis, providing a facile means of preparing samples for single-molecule force spectroscopy. The workflow eliminates the need for biochemical protein purification during sample preparation for single-molecule measurements, making structurally unstable proteins amenable to investigation by this powerful single-molecule technique. We demonstrate the capabilities of this approach by carrying out pulling experiments with an unstructured domain of elongation factor G that had previously been refractory to analysis. Our approach expands the pool of proteins amenable to folding studies, which should help to reduce existing biases in the currently available set of protein folding models.


Asunto(s)
Pinzas Ópticas , Pliegue de Proteína , Factor G de Elongación Peptídica , Proteínas , Ribosomas
6.
Methods Mol Biol ; 2478: 427-460, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36063330

RESUMEN

Tethering proteins to force probes, typically micrometer-sized beads, is a prerequisite for dissecting their properties with optical tweezers. DNA handles serve as spacers between the tethered protein of interest and the bead surface. Attachment sites of the DNA handles to both the surface of beads and to the protein of interest must be mechanically stable for optical tweezers experiments. The most prominent method for attaching DNA handles to proteins utilizes thiol chemistry, linking modified DNA to engineered cysteines in the target protein. This method, although experimentally straightforward, is impractical for the large number of proteins that endogenously contain multiple or essential cysteines at undesired positions. Here, we describe two alternative approaches that take advantage of genetically encoded tag sequences in the target protein. The first method uses the enzymes Sfp and BirA, and the second uses the more recently described SpyTag-SpyCatcher system. We outline the process of generating the DNA handles themselves, as well as how to make the DNA-protein chimeras for carrying out optical tweezers experiments. These methods have robustly worked for several diverse and complex proteins, including ones that are difficult to produce or purify, and for protein-containing complexes such as the ribosome. They will be useful in cases where chemistry-based approaches are impractical or not feasible.


Asunto(s)
Pinzas Ópticas , Pliegue de Proteína , ADN/química , Proteínas/química , Ribosomas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA