Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Aust Vet J ; 102(5): 256-263, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38361144

RESUMEN

A mortality event involving 23 allied rock-wallabies (Petrogale assimilis) displaying neurological signs and sudden death occurred in late April to May 2021 in a suburban residential area directly adjacent to Magnetic Island National Park, on Magnetic Island (Yunbenun), North Queensland, Australia. Three allied rock-wallabies were submitted for necropsy, and in all three cases, the cause of death was disseminated toxoplasmosis. This mortality event was unusual because only a small, localised population of native wallabies inhabiting a periurban area on a tropical island in the Great Barrier Reef World Heritage Area were affected. A disease investigation determined the outbreak was likely linked to the presence of free-ranging feral and domesticated cats inhabiting the area. There were no significant deaths of other wallabies or wildlife in the same or other parts of Magnetic Island (Yunbenun) at the time of the outbreak. This is the first reported case of toxoplasmosis in allied rock-wallabies (Petrogale assimilis), and this investigation highlights the importance of protecting native wildlife species from an infectious and potentially fatal parasitic disease.


Asunto(s)
Brotes de Enfermedades , Macropodidae , Toxoplasmosis Animal , Animales , Gatos , Animales Salvajes/parasitología , Brotes de Enfermedades/veterinaria , Epidemias/veterinaria , Islas , Macropodidae/parasitología , Queensland/epidemiología , Toxoplasma , Toxoplasmosis Animal/epidemiología , Toxoplasmosis Animal/mortalidad
2.
Med Phys ; 39(7): 4066-72, 2012 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-22830739

RESUMEN

PURPOSE: To determine k(Q(msr),Q(o) ) (f(msr),f(o) ) correction factors for machine-specific reference (msr) conditions by Monte Carlo (MC) simulations for reference dosimetry of TomoTherapy static beams for ion chambers Exradin A1SL, A12; PTW 30006, 31010 Semiflex, 31014 PinPoint, 31018 microLion; NE 2571. METHODS: For the calibration of TomoTherapy units, reference conditions specified in current codes of practice like IAEA∕TRS-398 and AAPM∕TG-51 cannot be realized. To cope with this issue, Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)] described a new formalism introducing msr factors k(Q(msr),Q(o) ) (f(msr),f(o) ) for reference dosimetry, applicable to static TomoTherapy beams. In this study, those factors were computed directly using MC simulations for Q(0) corresponding to a simplified (60)Co beam in TRS-398 reference conditions (at 10 cm depth). The msr conditions were a 10 × 5 cm(2) TomoTherapy beam, source-surface distance of 85 cm and 10 cm depth. The chambers were modeled according to technical drawings using the egs++ package and the MC simulations were run with the egs_chamber user code. Phase-space files used as the source input were produced using PENELOPE after simulation of a simplified (60)Co beam and the TomoTherapy treatment head modeled according to technical drawings. Correlated sampling, intermediate phase-space storage, and photon cross-section enhancement variance reduction techniques were used. The simulations were stopped when the combined standard uncertainty was below 0.2%. RESULTS: Computed k(Q(msr),Q(o) ) (f(msr),f(o) ) values were all close to one, in a range from 0.991 for the PinPoint chamber to 1.000 for the Exradin A12 with a statistical uncertainty below 0.2%. Considering a beam quality Q defined as the TPR(20,10) for a 6 MV Elekta photon beam (0.661), the additional correction k(Q(msr,)Q) (f(msr,)f(ref) ) to k(Q,Q(o) ) defined in Alfonso et al. [Med. Phys. 35, 5179-5186 (2008)] formalism was in a range from 0.997 to 1.004. CONCLUSION: The MC computed factors in this study are in agreement with measured factors for chamber types already studied in literature. This work provides msr correction factors for additional chambers used in reference dosimetry. All of them were close to one (within 1%).


Asunto(s)
Artefactos , Modelos Estadísticos , Método de Montecarlo , Radiometría/instrumentación , Radiometría/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Simulación por Computador , Diseño de Equipo , Análisis de Falla de Equipo , Internacionalidad , Radiometría/normas , Dosificación Radioterapéutica , Radioterapia Conformacional/normas , Valores de Referencia
3.
Med Phys ; 39(6): 2997-3008, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22755684

RESUMEN

PURPOSE: To describe a novel methodology of converting megavoltage x-ray projections into virtual proton projections that are otherwise missing due to the proton range limit. These converted virtual proton projections can be used in the reconstruction of proton computed tomography (pCT). METHODS: Relations exist between proton projections and multispectral megavoltage x-ray projections for human tissue. Based on these relations, these tissues can be categorized into: (a) adipose tissue; (b) nonadipose soft tissues; and (c) bone. These three tissue categories can be visibly identified on a regular megavoltage x-ray computed tomography (MVCT) image. With an MVCT image and its projection data available, the x-ray projections through heterogeneous anatomy can be converted to the corresponding proton projections using predetermined calibration curves for individual materials, aided by a coarse segmentation on the x-ray CT image. To show the feasibility of this approach, mathematical simulations were carried out. The converted proton projections, plotted on a proton sinogram, were compared to the simulated ground truth. Proton stopping power images were reconstructed using either the virtual proton projections only or a blend of physically available proton projections and virtual proton projections that make up for those missing due to the range limit. These images were compared to a reference image reconstructed from theoretically calculated proton projections. RESULTS: The converted virtual projections had an uncertainty of ±0.8% compared to the calculated ground truth. Proton stopping power images reconstructed using a blend of converted virtual projections (48%) and physically available projections (52%) had an uncertainty of ±0.86% compared with that reconstructed from theoretically calculated projections. Reconstruction solely from converted virtual proton projections had an uncertainty of ±1.1% compared with that reconstructed from theoretical projections. If these images are used for treatment planning, the average proton range uncertainty is estimated to be less than 1.5% for an imaging dose in the milligray range. CONCLUSIONS: The proposed method can be used to convert x-ray projections into virtual proton projections. The converted proton projections can be blended with existing proton projections or can be used solely for pCT reconstruction, addressing the range limit problem of pCT using current therapeutic proton machines.


Asunto(s)
Procesamiento de Imagen Asistido por Computador/métodos , Protones , Tomografía Computarizada por Rayos X/métodos , Interfaz Usuario-Computador , Humanos , Modelos Teóricos
4.
Aust Vet J ; 100(7): 329-335, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35490398

RESUMEN

A novel alphaherpesvirus was detected in a captive adult, lactating, female koala (Phascolarctos cinereus) admitted to James Cook University Veterinary Emergency Teaching & Clinical Hospital in March 2019, showing signs of anorexia and severe respiratory disease. Postmortem examination revealed gross pathology indicative of pneumonia. Histopathology demonstrated a chronic interstitial pneumonia, multifocal necrotising adrenalitis and hepatitis. Intranuclear inclusion bodies were detected by light microscopy in the respiratory epithelium of the bronchi, bronchioles, alveoli, and hepatocytes, biliary epithelium and adrenal gland associated with foci of necrosis. Cryptococcus gattii was isolated from fresh lung on necropsy, positively identified by PCR, and detected histologically by light microscopy, only in the lung tissue. A universal viral family-level PCR indicated that the virus was a member of the Herpesviruses. Sequence analysis in comparison to other known and published herpesviruses, indicated the virus was a novel alphaherpesvirus, with 97% nucleotide identity to macropodid alphaherpesvirus 1. We provisionally name the novel virus phascolarctid alphaherpesvirus 3 (PhaHV-3). Further research is needed to determine the distribution of this novel alphaherpesvirus in koala populations and establish associations with disease in this host species.


Asunto(s)
Criptococosis , Cryptococcus gattii , Phascolarctidae , Neumonía , Animales , Criptococosis/patología , Criptococosis/veterinaria , Femenino , Humanos , Lactancia , Neumonía/veterinaria
5.
Med Phys ; 38(3): 1579-86, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-21520869

RESUMEN

PURPOSE: Every year, new radiotherapy techniques including stereotactic radiosurgery using linear accelerators give rise to new applications of Monte Carlo (MC) modeling. Accurate modeling requires knowing the size of the electron spot, one of the few parameters to tune in MC models. The resolution of integrated megavoltage imaging systems, such as the tomotherapy system, strongly depends on the photon spot size which is closely related to the electron spot. The aim of this article is to clarify the relationship between the electron spot size and the photon spot size (i.e., the focal spot size) for typical incident electron beam energies and target thicknesses. METHODS: Three electron energies (3, 5.5, and 18 MeV), four electron spot sizes (FWHM = 0, 0.5, 1, and 1.5 mm), and two tungsten target thicknesses (0.15 and 1 cm) were considered. The formation of the photon beam within the target was analyzed through electron energy deposition with depth, as well as photon production at several phase-space planes placed perpendicular to the beam axis, where only photons recorded for the first time were accounted for. Photon production was considered for "newborn" photons intersecting a 45 x 45 cm2 plane at the isocenter (85 cm from source). Finally, virtual source position and "effective" focal spot size were computed by back-projecting all the photons from the bottom of the target intersecting a 45 x 45 cm2 plane. The virtual source position and focal spot size were estimated at the plane position where the latter is minimal. RESULTS: In the relevant case of considering only photons intersecting the 45 x 45 cm2 plane, the results unambiguously showed that the effective photon spot is created within the first 0.25 mm of the target and that electron and focal spots may be assumed to be equal within 3-4%. CONCLUSIONS: In a good approximation photon spot size equals electron spot size for high energy X-ray treatments delivered by linear accelerators.


Asunto(s)
Electrones , Método de Montecarlo , Aceleradores de Partículas , Fotones , Dosis de Radiación , Tungsteno
6.
Med Phys ; 38(9): 5230-8, 2011 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-21978067

RESUMEN

PURPOSE: Original TomoTherapy systems may involve a trade-off between conformity and treatment speed, the user being limited to three slice widths (1.0, 2.5, and 5.0 cm). This could be overcome by allowing the jaws to define arbitrary fields, including very small slice widths (<1 cm), which are challenging for a beam model. The aim of this work was to incorporate the dynamic jaws feature into a Monte Carlo (MC) model called TomoPen, based on the MC code PENELOPE, previously validated for the original TomoTherapy system. METHODS: To keep the general structure of TomoPen and its efficiency, the simulation strategy introduces several techniques: (1) weight modifiers to account for any jaw settings using only the 5 cm phase-space file; (2) a simplified MC based model called FastStatic to compute the modifiers faster than pure MC; (3) actual simulation of dynamic jaws. Weight modifiers computed with both FastStatic and pure MC were compared. Dynamic jaws simulations were compared with the convolution∕superposition (C∕S) of TomoTherapy in the "cheese" phantom for a plan with two targets longitudinally separated by a gap of 3 cm. Optimization was performed in two modes: asymmetric jaws-constant couch speed ("running start stop," RSS) and symmetric jaws-variable couch speed ("symmetric running start stop," SRSS). Measurements with EDR2 films were also performed for RSS for the formal validation of TomoPen with dynamic jaws. RESULTS: Weight modifiers computed with FastStatic were equivalent to pure MC within statistical uncertainties (0.5% for three standard deviations). Excellent agreement was achieved between TomoPen and C∕S for both asymmetric jaw opening∕constant couch speed and symmetric jaw opening∕variable couch speed, with deviations well within 2%∕2 mm. For RSS procedure, agreement between C∕S and measurements was within 2%∕2 mm for 95% of the points and 3%∕3 mm for 98% of the points, where dose is greater than 30% of the prescription dose (gamma analysis). Dose profiles acquired in transverse and longitudinal directions through the center of the phantom were also compared with excellent agreement (2%∕2 mm) between all modalities. CONCLUSIONS: The combination of weights modifiers and interpolation allowed implementing efficiently dynamic jaws and dynamic couch features into TomoPen at a minimal cost in terms of efficiency (simulation around 8 h on a single CPU).


Asunto(s)
Método de Montecarlo , Radioterapia Asistida por Computador/métodos , Estudios de Factibilidad , Reproducibilidad de los Resultados
7.
Med Phys ; 37(8): 4138-45, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20879574

RESUMEN

PURPOSE: To describe a method to estimate the proton path in proton computed tomography (pCT) reconstruction, which is based on the probability of a proton passing through each point within an object to be imaged. METHODS: Based on multiple Coulomb scattering and a semianalytically derived model, the conditional probability of a proton passing through each point within the object given its incoming and exit condition is calculated in a Bayesian inference framework, employing data obtained from Monte Carlo simulation using GEANT4. The conditional probability at all of the points in the reconstruction plane forms a conditional probability map and can be used for pCT reconstruction. RESULTS: From the generated conditional probability map, a most-likely path (MLP) and a 90% probability envelope around the most-likely path can be extracted and used for pCT reconstruction. The reconstructed pCT image using the conditional probability map yields a smooth pCT image with minor artifacts. pCT reconstructions obtained using the extracted MLP and the 90% probability envelope compare well to reconstructions employing the method of cubic spline proton path estimation. CONCLUSIONS: The conditional probability of a proton passing through each point in an object given its entrance and exit condition can be obtained using the proposed method. The extracted MLP and the 90% probability envelope match the proton path recorded in the GEANT4 simulation well. The generated probability map also provides a benchmark for comparing different path estimation methods.


Asunto(s)
Algoritmos , Reconocimiento de Normas Patrones Automatizadas/métodos , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Inteligencia Artificial , Simulación por Computador , Interpretación Estadística de Datos , Modelos Biológicos , Modelos Estadísticos , Protones , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Dispersión de Radiación , Sensibilidad y Especificidad
9.
Med Phys ; 36(2): 364-72, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19291975

RESUMEN

Several compact proton accelerator systems for use in proton therapy have recently been proposed. Of paramount importance to the development of such an accelerator system is the maximum kinetic energy of protons, immediately prior to entry into the patient, that must be reached by the treatment system. The commonly used value for the maximum kinetic energy required for a medical proton accelerator is 250 MeV, but it has not been demonstrated that this energy is indeed necessary to treat all or most patients eligible for proton therapy. This article quantifies the maximum kinetic energy of protons, immediately prior to entry into the patient, necessary to treat a given percentage of patients with rotational proton therapy, and examines the impact of this energy threshold on the cost and feasibility of a compact, gantry-mounted proton accelerator treatment system. One hundred randomized treatment plans from patients treated with IMRT were analyzed. The maximum radiological pathlength from the surface of the patient to the distal edge of the treatment volume was obtained for 180 degrees continuous arc proton therapy and for 180 degrees split arc proton therapy (two 90 degrees arcs) using CT# profiles from the Pinnacle (Philips Medical Systems, Madison, WI) treatment planning system. In each case, the maximum kinetic energy of protons, immediately prior to entry into the patient, that would be necessary to treat the patient was calculated using proton range tables for various media. In addition, Monte Carlo simulations were performed to quantify neutron production in a water phantom representing a patient as a function of the maximum proton kinetic energy achievable by a proton treatment system. Protons with a kinetic energy of 240 MeV, immediately prior to entry into the patient, were needed to treat 100% of patients in this study. However, it was shown that 90% of patients could be treated at 198 MeV, and 95% of patients could be treated at 207 MeV. Decreasing the proton kinetic energy from 250 to 200 MeV decreases the total neutron energy fluence produced by stopping a monoenergetic pencil beam in a water phantom by a factor of 2.3. It is possible to significantly lower the requirements on the maximum kinetic energy of a compact proton accelerator if the ability to treat a small percentage of patients with rotational therapy is sacrificed. This decrease in maximum kinetic energy, along with the corresponding decrease in neutron production, could lower the cost and ease the engineering constraints on a compact proton accelerator treatment facility.


Asunto(s)
Neutrones , Terapia de Protones , Radioterapia/métodos , Humanos , Cinética , Fantasmas de Imagen , Fotones , Agua
11.
Med Phys ; 35(11): 5179-86, 2008 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-19070252

RESUMEN

The use of small fields in radiotherapy techniques has increased substantially, in particular in stereotactic treatments and large uniform or nonuniform fields that are composed of small fields such as for intensity modulated radiation therapy (IMRT). This has been facilitated by the increased availability of standard and add-on multileaf collimators and a variety of new treatment units. For these fields, dosimetric errors have become considerably larger than in conventional beams mostly due to two reasons; (i) the reference conditions recommended by conventional Codes of Practice (CoPs) cannot be established in some machines and (ii) the measurement of absorbed dose to water in composite fields is not standardized. In order to develop standardized recommendations for dosimetry procedures and detectors, an international working group on reference dosimetry of small and nonstandard fields has been established by the International Atomic Energy Agency (IAEA) in cooperation with the American Association of Physicists in Medicine (AAPM) Therapy Physics Committee. This paper outlines a new formalism for the dosimetry of small and composite fields with the intention to extend recommendations given in conventional CoPs for clinical reference dosimetry based on absorbed dose to water. This formalism introduces the concept of two new intermediate calibration fields: (i) a static machine-specific reference field for those modalities that cannot establish conventional reference conditions and (ii) a plan-class specific reference field closer to the patient-specific clinical fields thereby facilitating standardization of composite field dosimetry. Prior to progressing with developing a CoP or other form of recommendation, the members of this IAEA working group welcome comments from the international medical physics community on the formalism presented here.


Asunto(s)
Radiometría/normas , Humanos , Agencias Internacionales/normas , Estándares de Referencia
12.
Phys Med Biol ; 53(15): 4153-67, 2008 Aug 07.
Artículo en Inglés | MEDLINE | ID: mdl-18635895

RESUMEN

In this work the abilities of intensity-modulated x-ray therapy (IMXT) and intensity-modulated proton therapy (IMPT) to deliver boosts based on theragnostic imaging were assessed. Theragnostic imaging is the use of functional or molecular imaging data for prescribing radiation dose distributions. Distal gradient tracking, an IMPT method designed for the delivery of non-uniform dose distributions, was assessed. Dose prescriptions for a hypoxic region in a head and neck squamous cell carcinoma patient were designed to either uniformly boost the region or redistribute the dose based on positron emission tomography (PET) images of the (61)Cu(II)-diacetyl-bis(N(4)-methylthiosemicarbazone) ((61)Cu-ATSM) hypoxia surrogate. Treatment plans for the prescriptions were created for four different delivery methods: IMXT delivered with step-and-shoot and with helical tomotherapy, and IMPT delivered with spot scanning and distal gradient tracking. IMXT and IMPT delivered comparable dose distributions within the boost region for both uniform and redistributed theragnostic boosts. Normal tissue integral dose was lower by a factor of up to 3 for IMPT relative to the IMXT. For all delivery methods, the mean dose to the nearby organs at risk changed by less than 2 Gy for redistributed versus uniform boosts. The distal gradient tracking method resulted in comparable plans to the spot scanning method while reducing the number of proton beam spots by a factor of over 3.


Asunto(s)
Hipoxia/terapia , Terapia de Protones , Dosis de Radiación , Terapia Asistida por Computador/métodos , Humanos , Neoplasias/patología , Neoplasias/terapia , Fantasmas de Imagen , Sensibilidad y Especificidad , Rayos X
13.
Phys Med Biol ; 53(2): 417-30, 2008 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-18184996

RESUMEN

It has been suggested for quality assurance purposes that linac output variations for helical tomotherapy (HT) be within +/-2% of the long-term average. Due to cancellation of systematic uncertainty and averaging of random uncertainty over multiple beam directions, relative uncertainties in the dose distribution can be significantly lower than those in linac output. The sensitivity of four HT cases with respect to linac output uncertainties was assessed by scaling both modeled and measured systematic and random linac output uncertainties until a dose uncertainty acceptance criterion failed. The dose uncertainty acceptance criterion required the delivered dose to have at least a 95% chance of being within 2% of the planned dose in all of the voxels in the treatment volume. For a random linac output uncertainty of 5% of the long-term mean, the maximum acceptable amplitude of the modeled, sinusoidal, systematic component of the linac output uncertainty for the four cases was 1.8%. Although the measured linac output variations represented values that were outside of the +/-2% tolerance, the acceptance criterion did not fail for any of the four cases until the measured linac output variations were scaled by a factor of almost three. Thus, the +/-2% tolerance in linac output variations for HT is a more conservative tolerance than necessary.


Asunto(s)
Artefactos , Carga Corporal (Radioterapia) , Modelos Biológicos , Aceleradores de Partículas/instrumentación , Radiometría/métodos , Radioterapia Conformacional/instrumentación , Simulación por Computador , Humanos , Dosis de Radiación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
14.
Phys Med ; 24(2): 98-101, 2008 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-18430600

RESUMEN

A novel compact CT-guided intensity modulated proton radiotherapy (IMPT) system is described. The system is being designed to deliver fast IMPT so that larger target volumes and motion management can be accomplished. The system will be ideal for large and complex target volumes in young patients. The basis of the design is the dielectric wall accelerator (DWA) system being developed at the Lawrence Livermore National Laboratory (LLNL). The DWA uses fast switched high voltage transmission lines to generate pulsed electric fields on the inside of a high gradient insulating (HGI) acceleration tube. High electric field gradients are achieved by the use of alternating insulators and conductors and short pulse times. The system will produce individual pulses that can be varied in intensity, energy and spot width. The IMPT planning system will optimize delivery characteristics. The system will be capable of being sited in a conventional linac vault and provide intensity modulated rotational therapy. Feasibility tests of an optimization system for selecting the position, energy, intensity and spot size for a collection of spots comprising the treatment are underway. A prototype is being designed and concept designs of the envelope and environmental needs of the unit are beginning. The status of the developmental new technologies that make the compact system possible will be reviewed. These include, high gradient vacuum insulators, solid dielectric materials, SiC photoconductive switches and compact proton sources.


Asunto(s)
Aceleradores de Partículas/instrumentación , Terapia de Protones , Radioterapia de Intensidad Modulada/instrumentación , Fenómenos Biofísicos , Biofisica , Diseño de Equipo , Humanos , Neoplasias/diagnóstico por imagen , Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador , Tomografía Computarizada por Rayos X
15.
Med Phys ; 45(5): e84-e99, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29468678

RESUMEN

BACKGROUND: With radiotherapy having entered the era of image guidance, or image-guided radiation therapy (IGRT), imaging procedures are routinely performed for patient positioning and target localization. The imaging dose delivered may result in excessive dose to sensitive organs and potentially increase the chance of secondary cancers and, therefore, needs to be managed. AIMS: This task group was charged with: a) providing an overview on imaging dose, including megavoltage electronic portal imaging (MV EPI), kilovoltage digital radiography (kV DR), Tomotherapy MV-CT, megavoltage cone-beam CT (MV-CBCT) and kilovoltage cone-beam CT (kV-CBCT), and b) providing general guidelines for commissioning dose calculation methods and managing imaging dose to patients. MATERIALS & METHODS: We briefly review the dose to radiotherapy (RT) patients resulting from different image guidance procedures and list typical organ doses resulting from MV and kV image acquisition procedures. RESULTS: We provide recommendations for managing the imaging dose, including different methods for its calculation, and techniques for reducing it. The recommended threshold beyond which imaging dose should be considered in the treatment planning process is 5% of the therapeutic target dose. DISCUSSION: Although the imaging dose resulting from current kV acquisition procedures is generally below this threshold, the ALARA principle should always be applied in practice. Medical physicists should make radiation oncologists aware of the imaging doses delivered to patients under their care. CONCLUSION: Balancing ALARA with the requirement for effective target localization requires that imaging dose be managed based on the consideration of weighing risks and benefits to the patient.


Asunto(s)
Dosis de Radiación , Radioterapia Guiada por Imagen/métodos , Informe de Investigación , Tomografía Computarizada de Haz Cónico , Humanos , Medicina de Precisión , Radiometría , Dosificación Radioterapéutica , Planificación de la Radioterapia Asistida por Computador , Radioterapia Guiada por Imagen/instrumentación , Radioterapia de Intensidad Modulada
16.
Phys Med Biol ; 52(20): 6073-91, 2007 Oct 21.
Artículo en Inglés | MEDLINE | ID: mdl-17921573

RESUMEN

Selective subvolume boosting can theoretically improve tumour control probability while maintaining normal tissue complication probabilities similar to those of uniform dose distributions. In this work the abilities of intensity-modulated x-ray therapy (IMXT) and intensity-modulated proton therapy (IMPT) to deliver boosts to multiple subvolumes of varying size and proximities are compared in a thorough phantom study. IMXT plans were created using the step-and-shoot (IMXT-SAS) and helical tomotherapy (IMXT-HT) methods. IMPT plans were created with the spot scanning (IMPT-SS) and distal gradient tracking (IMPT-DGT) methods. IMPT-DGT is a generalization of the distal edge tracking method designed to reduce the number of proton beam spots required to deliver non-uniform dose distributions relative to IMPT-SS. The IMPT methods were delivered over both 180 degrees and 360 degrees arcs. The IMXT-SAS and IMPT-SS methods optimally satisfied the non-uniform dose prescriptions the least and the most, respectively. The IMPT delivery methods reduced the normal tissue integral dose by a factor of about 2 relative to the IMXT delivery methods, regardless of the delivery arc. The IMPT-DGT method reduced the number of proton beam spots by a factor of about 3 relative to the IMPT-SS method.


Asunto(s)
Modelos Biológicos , Neoplasias/radioterapia , Terapia de Protones , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Radioterapia de Alta Energía/métodos , Simulación por Computador , Humanos , Fantasmas de Imagen , Dosificación Radioterapéutica , Efectividad Biológica Relativa , Reproducibilidad de los Resultados , Sensibilidad y Especificidad
17.
Semin Radiat Oncol ; 16(4): 199-208, 2006 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-17010902

RESUMEN

Fixed-field treatments, delivered using conventional clinical linear accelerators fitted with multileaf collimators, have rapidly become the standard form of intensity-modulated radiotherapy (IMRT). Several innovative nonstandard alternatives also exist, for which delivery and treatment planning systems are now commercially available. Three of these nonstandard IMRT approaches are reviewed here: tomotherapy, robotic linear accelerators (CyberKnife, Accuray Inc., Sunnyvale, CA), and standard linear accelerators modulated by jaws alone or by their jaws acting together with a tertiary beam-masking device. Rationales for the nonstandard IMRT approaches are discussed, and elements of their delivery system designs are briefly described. Differences between fixed-field IMRT dose distributions and the distributions that can be delivered by using the nonstandard technologies are outlined. Because conventional linear accelerators are finely honed machines, innovative design enhancement of one aspect of system performance often limits another facet of machine capability. Consequently the various delivery systems may prove optimal for different types of treatment, with specific machine designs excelling for disease sites with specific target volume and normal structure topologies. However it is likely that the delivery systems will be distinguished not just by the optimality of the dose distributions they deliver, but also by factors such as the efficiency of their treatment process, the integration of their onboard imaging systems into that process, and their ability to measure and minimize or compensate for target movement, including the effects of respiratory motion.


Asunto(s)
Neoplasias/radioterapia , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia de Intensidad Modulada/métodos , Tomografía Computarizada Espiral/métodos , Humanos , Traumatismos por Radiación/prevención & control
18.
Med Phys ; 33(11): 4395-404, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-17153418

RESUMEN

Precise daily target localization is necessary to achieve highly conformal radiation delivery. In helical tomotherapy, setup verification may be accomplished just prior to delivering each fraction by acquiring a megavoltage CT scan of the patient in the treatment position. This daily image set may be manually or automatically registered to the image set on which the treatment plan was calculated, in order to determine any needed adjustments. The system was tested by acquiring 104 MVCT scans of an anthropomorphic head phantom to which translational displacements had been introduced with respect to the planning image set. Registration results were compared against an independent, optically guided positioning system. The total experimental uncertainty was within approximately 1 mm. Although the registration of phantom images is not fully analogous to the registration of patient images, this study confirms that the system is capable of phantom localization with sub-voxel accuracy. In seven registration problems considered, expert human observers were able to perform manual registrations with comparable or inferior accuracy to automatic registration by mutual information. The time to compute an automatic registration is considerably shorter than the time required for manual registration. However, human evaluation of automatic results is necessary in order to identify occasional outliers, and to ensure that the registration is clinically acceptable, especially in the case of deformable patient anatomy.


Asunto(s)
Inteligencia Artificial , Cabeza/diagnóstico por imagen , Interpretación de Imagen Radiográfica Asistida por Computador/métodos , Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/métodos , Técnica de Sustracción , Tomografía Computarizada por Rayos X/métodos , Algoritmos , Imagenología Tridimensional/métodos , Almacenamiento y Recuperación de la Información/métodos , Reconocimiento de Normas Patrones Automatizadas/métodos , Fantasmas de Imagen , Garantía de la Calidad de Atención de Salud , Intensificación de Imagen Radiográfica/métodos , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Tomografía Computarizada por Rayos X/instrumentación
19.
Phys Med Biol ; 51(13): R427-53, 2006 Jul 07.
Artículo en Inglés | MEDLINE | ID: mdl-16790916

RESUMEN

Tomotherapy is the delivery of intensity modulated radiation therapy using rotational delivery of a fan beam in the manner of a CT scanner. In helical tomotherapy the couch and gantry are in continuous motion akin to a helical CT scanner. Helical tomotherapy is inherently capable of acquiring CT images of the patient in treatment position and using this information for image guidance. This review documents technological advancements of the field concentrating on the conceptual beginnings through to its first clinical implementation. The history of helical tomotherapy is also a story of technology migration from academic research to a university-industrial partnership, and finally to commercialization and widespread clinical use.


Asunto(s)
Planificación de la Radioterapia Asistida por Computador/instrumentación , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Conformacional/instrumentación , Radioterapia Conformacional/métodos , Tomografía Computarizada por Rayos X/instrumentación , Tomografía Computarizada por Rayos X/métodos , Diseño de Equipo , Historia del Siglo XX , Historia del Siglo XXI , Planificación de la Radioterapia Asistida por Computador/historia , Radioterapia Conformacional/historia , Tomografía Computarizada por Rayos X/historia
20.
Med Phys ; 32(7): 2346-50, 2005 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-16121591

RESUMEN

The interplay between a constant scan speed and intrafraction oscillatory motion produces interesting fluence intensity modulations along the axis of motion that are sensitive to the motion function, as originally shown in a classic paper by Yu et al. [Phys. Med. Biol. 43, 91-104 (1998)]. The fluence intensity profiles are explored in this note for an intuitive understanding, then compared with Yu et al., and finally further explored for the effects of low scan speed and random components of both intrafraction and interfraction motion. At slow scan speeds typical of helical tomotherapy, these fluence intensity modulations are only a few percent. With the addition of only a small amount of cycle-to-cycle randomness in frequency and amplitude, the fluence intensity profiles change dramatically. It is further shown that after a typical 30-fraction treatment, the sensitivities displayed in the single fraction fluence intensity profiles greatly diminish.


Asunto(s)
Neoplasias Pulmonares/fisiopatología , Neoplasias Pulmonares/radioterapia , Modelos Biológicos , Movimiento , Radiometría/métodos , Radioterapia Conformacional/métodos , Mecánica Respiratoria , Carga Corporal (Radioterapia) , Fraccionamiento de la Dosis de Radiación , Humanos , Movimiento (Física) , Dosificación Radioterapéutica , Radioterapia Conformacional/instrumentación , Efectividad Biológica Relativa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA