Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 104
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Neurovirol ; 30(1): 71-85, 2024 02.
Artículo en Inglés | MEDLINE | ID: mdl-38355914

RESUMEN

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 messenger RNA (mRNA) from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL corresponding to a physical titer of 0, 4.23 × 109, 8.46 × 109, 1.269 × 1010, 1.692 × 1010, 2.115 × 1010, and 2.538 × 1010 gc/µL) of CRISPR/Cas9 for 72 h. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n = 5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the medial prefrontal cortex. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1-associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 protractedly, albeit not permanently, restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.


Asunto(s)
Sistemas CRISPR-Cas , Edición Génica , VIH-1 , ARN Mensajero , Ratas Transgénicas , Animales , VIH-1/genética , VIH-1/fisiología , Ratas , ARN Mensajero/genética , ARN Mensajero/metabolismo , Edición Génica/métodos , Neuroglía/virología , Neuroglía/metabolismo , Dependovirus/genética , Infecciones por VIH/virología , Infecciones por VIH/genética , Técnicas de Silenciamiento del Gen , ARN Viral/genética , Cognición/fisiología , Humanos
2.
J Neurovirol ; 29(4): 460-471, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37222970

RESUMEN

Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the expression of HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of immunostaining and/or RNAscope multiplex fluorescent assays revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV inoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1 + and Ki67 + relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and postsynaptic density protein 95 (PSD-95), markers of presynaptic and postsynaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounted for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.


Asunto(s)
Infecciones por VIH , VIH-1 , Ratas , Animales , Microglía/metabolismo , Corteza Prefrontal/metabolismo , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/metabolismo , Proliferación Celular , ARN Mensajero/metabolismo
3.
Int J Mol Sci ; 23(16)2022 Aug 13.
Artículo en Inglés | MEDLINE | ID: mdl-36012364

RESUMEN

Independently, chronic cocaine use and HIV-1 viral protein exposure induce neuroadaptations in the frontal-striatal circuit as evidenced by both clinical and preclinical studies; how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use, however, has remained elusive. After establishing experience with both sucrose and cocaine self-administration, a pretest-posttest experimental design was utilized to evaluate preference judgment, a simple form of decision-making dependent upon the integrity of frontal-striatal circuit function. During the pretest assessment, male rats exhibited a clear preference for cocaine, whereas female animals preferred sucrose. Two posttest evaluations (3 days and 6 weeks post inoculation) revealed that, independent of biological sex, inoculation with chimeric HIV (EcoHIV), but not saline, disrupted decision-making. Prominent structural alterations in the frontal-striatal circuit were evidenced by synaptodendritic alterations in pyramidal neurons in the medial prefrontal cortex. Thus, the EcoHIV rat affords a valid animal model to critically investigate how the frontal-striatal circuit responds to HIV-1 infection following chronic drug use.


Asunto(s)
Trastornos Relacionados con Cocaína , Cocaína , Animales , Cocaína/farmacología , Trastornos Relacionados con Cocaína/metabolismo , Femenino , Masculino , Corteza Prefrontal/metabolismo , Células Piramidales , Ratas , Sacarosa/metabolismo
4.
J Neurovirol ; 27(3): 403-421, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-34003469

RESUMEN

HIV-1 infection affects approximately 37 million individuals, and approximately 50% of seropositive individuals will develop symptoms of clinical depression and/or apathy. Dysfunctions of both serotonergic and dopaminergic neurotransmission have been implicated in the pathogenesis of motivational alterations. The present study evaluated the efficacy of a SSRI (escitalopram) in the HIV-1 transgenic (Tg) rat. Behavioral, neurochemical, and neuroanatomical outcomes with respect to HIV-1 and sex were evaluated to determine the efficacy of chronic escitalopram treatment. Escitalopram treatment restored function in each of the behavioral tasks that were sensitive to HIV-1-induced impairments. Further, escitalopram treatment restored HIV-1-mediated synaptodendritic damage in the nucleus accumbens; treatment with escitalopram significantly increased dendritic proliferation in HIV-1 Tg rats. However, restoration did not consistently occur with the neurochemical analysis in the HIV-1 rat. Taken together, these results suggest a role for SSRI therapies in repairing long-term HIV-1 protein-mediated neuronal damage and restoring function.


Asunto(s)
Antidepresivos/farmacología , Apatía/efectos de los fármacos , Depresión/tratamiento farmacológico , Escitalopram/farmacología , Infecciones por VIH/tratamiento farmacológico , Inhibidores Selectivos de la Recaptación de Serotonina/farmacología , Animales , Conducta de Elección/efectos de los fármacos , Dendritas/efectos de los fármacos , Dendritas/patología , Dendritas/virología , Depresión/complicaciones , Depresión/fisiopatología , Depresión/virología , Neuronas Dopaminérgicas/efectos de los fármacos , Neuronas Dopaminérgicas/patología , Neuronas Dopaminérgicas/virología , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/fisiopatología , Infecciones por VIH/virología , VIH-1/crecimiento & desarrollo , VIH-1/patogenicidad , Humanos , Masculino , Aprendizaje por Laberinto/efectos de los fármacos , Núcleo Accumbens/efectos de los fármacos , Núcleo Accumbens/patología , Núcleo Accumbens/virología , Ratas , Ratas Transgénicas , Neuronas Serotoninérgicas/efectos de los fármacos , Neuronas Serotoninérgicas/patología , Neuronas Serotoninérgicas/virología , Sinapsis/efectos de los fármacos , Sinapsis/patología , Sinapsis/virología , Transmisión Sináptica/efectos de los fármacos , Resultado del Tratamiento
5.
J Neurovirol ; 26(5): 704-718, 2020 10.
Artículo en Inglés | MEDLINE | ID: mdl-32870477

RESUMEN

Chronic neurocognitive impairments, commonly associated with pediatric human immunodeficiency virus type 1 (PHIV), are a detrimental consequence of early exposure to HIV-1 viral proteins. Strong evidence supports S-Equol (SE) as an efficacious adjunctive neuroprotective and/or neurorestorative therapeutic for neurocognitive impairments in adult ovariectomized female HIV-1 transgenic (Tg) rats. There remains, however, a critical need to assess the therapeutic efficacy of SE when treatment occurs at an earlier age (i.e., resembling a therapeutic for children with PHIV) and across the factor of biological sex. Utilization of a series of signal detection operant tasks revealed prominent, sex-dependent neurocognitive deficits in the HIV-1 Tg rat, characterized by alterations in stimulus-reinforcement learning, the response profile, and temporal processing. Early (i.e., postnatal day 28) initiation of SE treatment precluded the development of chronic neurocognitive impairments in all (i.e., 100%) HIV-1 Tg animals, albeit not for all neurocognitive domains. Most notably, the therapeutic effects of SE are generalized across the factor of biological sex, despite the presence of endogenous hormones. Results support, therefore, the efficacy of SE as a neuroprotective therapeutic for chronic neurocognitive impairments in the post-cART era; an adjunctive therapeutic that demonstrates high efficacy in both males and females. Optimizing treatment conditions by evaluating multiple factors (i.e., age, neurocognitive domains, and biological sex) associated with PHIV and HIV-1 associated neurocognitive disorders (HAND) affords a key opportunity to improve the therapeutic efficacy of SE.


Asunto(s)
Disfunción Cognitiva/prevención & control , Condicionamiento Operante/efectos de los fármacos , Infecciones por VIH/tratamiento farmacológico , Fármacos Neuroprotectores/farmacología , Fitoestrógenos/farmacología , Animales , Niño , Disfunción Cognitiva/fisiopatología , Disfunción Cognitiva/psicología , Condicionamiento Operante/fisiología , Modelos Animales de Enfermedad , Femenino , Infecciones por VIH/fisiopatología , Infecciones por VIH/psicología , VIH-1/patogenicidad , VIH-1/fisiología , Humanos , Masculino , Pruebas de Estado Mental y Demencia , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Refuerzo en Psicología , Factores Sexuales
6.
J Neurovirol ; 25(5): 686-701, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-30607890

RESUMEN

In 2007, the nosology for HIV-1-associated neurocognitive disorders (HAND) was updated to a primarily neurocognitive disorder. However, currently available diagnostic tools lack the sensitivity and specificity needed for an accurate diagnosis for HAND. Scientists and clinicians, therefore, have been on a quest for an innovative biomarker to diagnose (i.e., diagnostic biomarker) and/or predict (i.e., prognostic biomarker) the progression of HAND in the post-combination antiretroviral therapy (cART) era. The present review examined the utility and challenges of four proposed biomarkers, including neurofilament light (NFL) chain concentration, amyloid (i.e., sAPPα, sAPPß, amyloid ß) and tau proteins (i.e., total tau, phosphorylated tau), resting-state functional magnetic resonance imaging (fMRI), and prepulse inhibition (PPI). Although significant genotypic differences have been observed in NFL chain concentration, sAPPα, sAPPß, amyloid ß, total tau, phosphorylated tau, and resting-state fMRI, inconsistencies and/or assessment limitations (e.g., invasive procedures, lack of disease specificity, cost) challenge their utility as a diagnostic and/or prognostic biomarker for milder forms of neurocognitive impairment (NCI) in the post-cART era. However, critical evaluation of the literature supports the utility of PPI as a powerful diagnostic biomarker with high accuracy (i.e., 86.7-97.1%), sensitivity (i.e., 89.3-100%), and specificity (i.e., 79.5-94.1%). Additionally, the inclusion of multiple CSF and/or plasma markers, rather than a single protein, may provide a more sensitive diagnostic biomarker for HAND; however, a pressing need for additional research remains. Most notably, PPI may serve as a prognostic biomarker for milder forms of NCI, evidenced by its ability to predict later NCI in higher-order cognitive domains with regression coefficients (i.e., r) greater than 0.8. Thus, PPI heralds an opportunity for the development of a brief, noninvasive diagnostic and promising prognostic biomarker for milder forms of NCI in the post-cART era.


Asunto(s)
Complejo SIDA Demencia/diagnóstico , Biomarcadores , Complejo SIDA Demencia/sangre , Complejo SIDA Demencia/líquido cefalorraquídeo , Complejo SIDA Demencia/mortalidad , Precursor de Proteína beta-Amiloide/análisis , Precursor de Proteína beta-Amiloide/líquido cefalorraquídeo , Animales , Fármacos Anti-VIH/uso terapéutico , Biomarcadores/sangre , Biomarcadores/líquido cefalorraquídeo , Encéfalo/metabolismo , Encéfalo/patología , Encéfalo/virología , Química Encefálica , Mapeo Encefálico , Progresión de la Enfermedad , Femenino , Infecciones por VIH/tratamiento farmacológico , VIH-1 , Humanos , Imagen por Resonancia Magnética , Masculino , Proteínas de Neurofilamentos/sangre , Proteínas de Neurofilamentos/líquido cefalorraquídeo , Inhibición Prepulso , Pronóstico , Ratas , Ratas Transgénicas , Reflejo de Sobresalto , Sensibilidad y Especificidad , Proteínas tau/líquido cefalorraquídeo
7.
J Neurovirol ; 25(4): 540-550, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31102184

RESUMEN

Between 30 and 60% of HIV-seropositive individuals develop symptoms of clinical depression and/or apathy. Dopamine and serotonin are associated with motivational alterations; however, histamine is less well studied. In the present study, we used fast-scan cyclic voltammetry in HIV-1 transgenic (Tg) rats to simultaneously analyze the kinetics of nucleus accumbens dopamine (DA), prefrontal cortical serotonin (5-HT), and hypothalamic histamine (HA). For voltammetry, subjects were 15 HIV-1 Tg (7 male, 8 female) and 20 F344/N (11 male, 9 female) adult rats. Both serotonergic and dopaminergic release and reuptake kinetics were decreased in HIV-1 Tg animals relative to controls. In contrast, rates of histamine release and reuptake increased in HIV-1 Tg rats. Additionally, we used immunohistochemical (IHC) methods to identify histaminergic neurons in the tuberomammillary nucleus (TMN) of the hypothalamus. For IHC, subjects were 9 HIV-1 Tg (5 male, 4 female) and 9 F344/N (5 male, 4 female) adult rats. Although the total number of TMN histaminergic cells did not differ between HIV-1 Tg rats and F344/N controls, a significant sex effect was found, with females having an increased number of histaminergic neurons, relative to males. Collectively, these findings illustrate neurochemical alterations that potentially underlie or exacerbate the pathogenesis of clinical depression and/or apathy in HIV-1.


Asunto(s)
Dopamina/metabolismo , VIH-1/genética , Histamina/metabolismo , Hipotálamo/metabolismo , Núcleo Accumbens/metabolismo , Corteza Prefrontal/metabolismo , Serotonina/metabolismo , Animales , Apatía , Depresión/metabolismo , Depresión/psicología , Depresión/virología , Femenino , Infecciones por VIH/metabolismo , Infecciones por VIH/psicología , Infecciones por VIH/virología , VIH-1/metabolismo , Hipotálamo/virología , Masculino , Modelos Biológicos , Núcleo Accumbens/virología , Corteza Prefrontal/virología , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas , Factores Sexuales , Transmisión Sináptica , Proteínas Virales/biosíntesis , Proteínas Virales/genética
8.
J Neurovirol ; 24(2): 229-245, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-28730408

RESUMEN

Understanding the progression of HIV-1-associated neurocognitive disorders (HAND) is a critical need as the prevalence of HIV-1 in older individuals (>50 years) is markedly increasing due to the great success of combination antiretroviral therapy (cART). Longitudinal experimental designs, in comparison to cross-sectional studies, provide an opportunity to establish age-related disease progression in HAND. The HIV-1 transgenic (Tg) rat, which has been promoted for investigating the effect of long-term HIV-1 viral protein exposure, was used to examine two interrelated goals. First, to establish the integrity of sensory and motor systems through the majority of the animal's functional lifespan. Strong evidence for intact sensory and motor system function through advancing age in HIV-1 Tg and control animals was observed in cross-modal prepulse inhibition (PPI) and locomotor activity. The integrity of sensory and motor system function suggested the utility of the HIV-1 Tg rat in investigating the progression of HAND. Second, to assess the progression of neurocognitive impairment, including temporal processing and long-term episodic memory, in the HIV-1 Tg rat; the factor of biological sex was integral to the experimental design. Cross-modal PPI revealed significant alterations in the development of temporal processing in HIV-1 Tg animals relative to controls; alterations which were more pronounced in female HIV-1 Tg rats relative to male HIV-1 Tg rats. Locomotor activity revealed deficits in intrasession habituation, suggestive of a disruption in long-term episodic memory, in HIV-1 Tg animals. Understanding the progression of HAND heralds an opportunity for the development of an advantageous model of progressive neurocognitive deficits in HIV-1 and establishes fundamental groundwork for the development of neurorestorative treatments.


Asunto(s)
Complejo SIDA Demencia/fisiopatología , Sistema Nervioso Central/fisiopatología , Disfunción Cognitiva/fisiopatología , Modelos Animales de Enfermedad , VIH-1/fisiología , Complejo SIDA Demencia/genética , Complejo SIDA Demencia/virología , Animales , Sistema Nervioso Central/virología , Disfunción Cognitiva/genética , Disfunción Cognitiva/virología , Progresión de la Enfermedad , Femenino , VIH-1/patogenicidad , Humanos , Locomoción , Masculino , Memoria Episódica , Memoria a Largo Plazo , Inhibición Prepulso , Desempeño Psicomotor , Ratas , Ratas Transgénicas , Factores Sexuales
9.
J Neurovirol ; 23(1): 87-98, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-27538996

RESUMEN

Since the advent of combination antiretroviral therapy (cART), pediatric HIV-1 (PHIV) has evolved from a fatal disease to a chronic disease as children perinatally infected with HIV-1 survive into adulthood. The HIV-1 transgenic (Tg) rat, which expresses 7 of the 9 HIV-1 genes constitutively throughout development, was used to model the early development of chronic neurological impairment in PHIV. Male and female Fischer HIV-1 Tg and F344 N control rats, sampled from 35 litters, were repeatedly assessed during early development using multiple experimental paradigms, including somatic growth, locomotor activity, cross-modal prepulse inhibition (PPI) and gap-prepulse inhibition (gap-PPI). Later eye opening was observed in HIV-1 Tg animals relative to controls. HIV-1 Tg animals exhibited a shift in the development of locomotor activity implicating alterations in the maturation of the forebrain cholinergic inhibitory system. Alterations in the development of PPI and perceptual sharpening were observed in both auditory and visual PPI as indexed by a relative insensitivity to the dimension of time (msec for ISI; days of age for perceptual sharpening) as a function of the HIV-1 transgene. Presence of the HIV-1 transgene was diagnosed with 97.1 % accuracy using auditory and visual PPI measurements from PD 17 and 21. Early selective developmental alterations observed in the HIV-1 Tg rats provide an opportunity for the development of a point-of-care screening tool, which would permit the early diagnosis of PHIV and improve the long-term outcome for children perinatally infected with HIV-1.


Asunto(s)
Disfunción Cognitiva/diagnóstico , Modelos Animales de Enfermedad , Genes Virales , Infecciones por VIH/diagnóstico , VIH-1/genética , Ratas Transgénicas , Animales , Percepción Auditiva , Niño , Disfunción Cognitiva/complicaciones , Disfunción Cognitiva/genética , Disfunción Cognitiva/fisiopatología , Femenino , Infecciones por VIH/complicaciones , Infecciones por VIH/genética , Infecciones por VIH/fisiopatología , Humanos , Locomoción , Masculino , Pruebas en el Punto de Atención , Inhibición Prepulso , Prosencéfalo/fisiopatología , Prosencéfalo/virología , Ratas , Ratas Endogámicas F344 , Transgenes , Percepción Visual
10.
Dev Neurosci ; 38(3): 171-185, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27287203

RESUMEN

In the USA, approximately 15% of women smoke tobacco cigarettes during pregnancy. In utero tobacco smoke exposure produces somatic growth deficits like intrauterine growth restriction and low birth weight in offspring, but it can also negatively influence neurodevelopmental outcomes in later stages of life, such as an increased incidence of obesity and drug abuse. Animal models demonstrate that prenatal nicotine (PN) alters the development of the mesocorticolimbic system, which is important for organizing goal-directed behavior. In the present study, we determined whether intravenous (IV) PN altered the initiation and/or expression of methamphetamine (METH)-induced locomotor sensitization as a measure of mesocorticolimbic function in adult rat offspring. We also determined whether PN and/or METH exposure altered protein levels of BDNF (brain-derived neurotrophic factor) in the nucleus accumbens, the dorsal striatum, and the prefrontal cortex of adult offspring. BDNF was of interest because of its role in the development and maintenance of the mesocorticolimbic pathway and its ability to modulate neural processes that contribute to drug abuse, such as sensitization of the dopamine system. Dams were injected with IV nicotine (0.05 mg/kg/injection) or saline, 3×/day on gestational days 8-21. Testing was conducted when offspring reached adulthood (around postnatal day 90). Following 3 once daily habituation sessions the animals received a saline injection and baseline locomotor activity was measured. PN and prenatal saline (PS)-exposed offspring then received 10 once daily injections of METH (0.3 mg/kg) to induce locomotor sensitization. The animals received a METH injection (0.3 mg/kg) to assess the expression of sensitization following a 14-day period of no injections. A day later, all animals were injected with saline and conditioned hyperactivity was assessed. Brain tissue was harvested 24 h later. PN animals habituated more slowly to the activity chambers compared to PS controls. PN rats treated with METH showed significant enhancement of locomotor behavior compared to PS rats following acute and repeated injections; however, PN did not produce differential initiation or expression of behavioral sensitization. METH produced conditioned hyperactivity, and PN rats exhibited a greater conditioned response of hyperactivity relative to controls. PN and METH exposure produced changes in BDNF protein levels in all three regions, and complex interactions were observed between these two factors. Logistic regression revealed that BDNF protein levels, throughout the mesocorticolimbic system, significantly predicted the difference in the conditioned hyperactive response of the animals: both correlations were significant, but the predicted relationship between BDNF and context-elicited activity was stronger in the PN (r = 0.67) compared to the PS rats (r = 0.42). These findings indicate that low-dose PN exposure produces long-term changes in activity and enhanced sensitivity to the locomotor effects of METH. The enhanced METH-induced contextual conditioning shown by the PN animals suggests that offspring of in utero tobacco smoke exposure have greater susceptibility to learn about drug-related conditional stimuli, such as the context. The PN-induced alterations in mesocorticolimbic BDNF protein lend further support for the hypothesis that maternal smoking during pregnancy produces alterations in neuronal plasticity that contribute to drug abuse vulnerability. The current findings demonstrate that these changes are persistent into adulthood.


Asunto(s)
Conducta Animal/efectos de los fármacos , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Metanfetamina/farmacología , Nicotina/farmacología , Efectos Tardíos de la Exposición Prenatal/metabolismo , Envejecimiento , Animales , Conducta Animal/fisiología , Dopamina/metabolismo , Femenino , Hipercinesia/inducido químicamente , Masculino , Actividad Motora/efectos de los fármacos , Actividad Motora/fisiología , Embarazo
11.
Dev Psychobiol ; 58(2): 211-22, 2016 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-26415825

RESUMEN

Deficits in prepulse inhibition (PPI), a measure of sensorimotor gating, are observed in neurodevelopmental and neuropsychiatric disorders. Despite the large PPI literature, the majority of studies characteristically employ tests with one interstimulus interval (ISI), of one modality, at one age. In the context of the auditory startle response (ASR), the present study examined (1) the profile for the ontogeny of PPI through adulthood in Long-Evans hooded rats with a reasonably comprehensive ISI function, (2) whether the ontogenetic profile for PPI is sensitive to modality of the prepulse stimulus, as a within-session variable, and (3) whether the maturation of PPI differs for males and females. Despite the basic effect of more pronounced PPI in adult relative to preweanling animals, each sensory modality displayed a unique ontogenetic profile for PPI, without any compelling evidence for major differences between males and females, in accordance with the known temporal course of peripheral and central maturational profiles of sensory systems in the rat. The context for assessing auditory PPI (auditory and tactile vs. auditory and visual prepulses) influenced the overall startle response, i.e., a shift in the height of the entire profile, but did not significantly impact the auditory PPI profile per se. The translational relevance of preclinical sensorimotor assessments to patients with neurodevelopmental and/or neuropsychiatric disorders depends partly on an understanding of the ontogeny of sensorimotor gating in different sensory systems, and can be strengthened with the use of a reasonably comprehensive number of ISIs to provide relatively precise and defined response functions.


Asunto(s)
Inhibición Prepulso/fisiología , Reflejo de Sobresalto/fisiología , Percepción Visual/fisiología , Estimulación Acústica , Factores de Edad , Animales , Femenino , Masculino , Estimulación Luminosa , Estimulación Física , Ratas , Ratas Long-Evans , Filtrado Sensorial/fisiología , Factores Sexuales , Percepción del Tacto
12.
J Neurochem ; 128(1): 140-51, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-23875777

RESUMEN

HIV-1 infects the brain and, despite antiretroviral therapy, many infected individuals suffer from HIV-1-associated neurocognitive disorders (HAND). HAND is associated with dendritic simplification and synaptic loss. Prevention of synaptodendritic damage may ameliorate or forestall neurocognitive decline in latent HIV-1 infections. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain and may cause synaptodendritic damage. This study examined the integrity of the dendritic network after exposure to HIV-1 Tat by labeling filamentous actin (F-actin)-rich structures (puncta) in primary neuronal cultures. After 24 h of treatment, HIV-1 Tat was associated with the dendritic arbor and produced a significant reduction of F-actin-labeled dendritic puncta as well as loss of dendrites. Pre-treatment with either of two plant-derived phytoestrogen compounds (daidzein and liquiritigenin), significantly reduced synaptodendritic damage following HIV-1 Tat treatment. In addition, 6 days after HIV-1 Tat treatment, treatment with either daidzein, or liquiritigenin enhanced recovery, via the estrogen receptor, from HIV-1 Tat-induced synaptodendritic damage. These results suggest that either liquiritigenin or daidzein may not only attenuate acute synaptodendritic injury in HIV-1 but may also promote recovery from synaptodendritic damage. The HIV-1 transactivating protein (Tat) is produced during viral latency in the brain. Treatment with either daidzein or liquiritigenin restored the loss of synaptic connectivity produced by HIV-1 Tat. This neurorestoration was mediated by estrogen receptors (ER). These results suggest that plant-derived phytoestrogens may promote recovery from HIV-1-induced synaptodendritic damage.


Asunto(s)
Dendritas/efectos de los fármacos , Dendritas/metabolismo , Neuronas/fisiología , Fitoestrógenos/farmacología , Recuperación de la Función/fisiología , Sinapsis/efectos de los fármacos , Productos del Gen tat del Virus de la Inmunodeficiencia Humana/toxicidad , Animales , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/fisiología , Células Cultivadas , Dendritas/patología , Hipocampo/efectos de los fármacos , Hipocampo/fisiología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Recuperación de la Función/efectos de los fármacos , Sinapsis/fisiología
13.
bioRxiv ; 2023 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-36711456

RESUMEN

Microglia, which are productively infected by HIV-1, are critical for brain development and maturation, as well as synaptic plasticity. The pathophysiology of HIV-infected microglia and their role in the pathogenesis of HIV-1-associated neurocognitive and affective alterations, however, remains understudied. Three complementary aims were undertaken to critically address this knowledge gap. First, the predominant cell type expressing HIV-1 mRNA in the dorsolateral prefrontal cortex of postmortem HIV-1 seropositive individuals with HAND was investigated. Utilization of a combined RNAscope multiplex fluorescent and immunostaining assay revealed prominent HIV-1 mRNA in microglia of postmortem HIV-1 seropositive individuals with HAND. Second, measures of microglia proliferation and neuronal damage were evaluated in chimeric HIV (EcoHIV) rats. Eight weeks after EcoHIV innoculation, enhanced microglial proliferation was observed in the medial prefrontal cortex (mPFC) of EcoHIV rats, evidenced by an increased number of cells co-localized with both Iba1+ and Ki67+ relative to control animals. Neuronal damage in EcoHIV infected rats was evidenced by pronounced decreases in both synaptophysin and post synaptic density protein 95 (PSD-95), markers of pre-synaptic and post-synaptic damage, respectively. Third, regression analyses were conducted to evaluate whether microglia proliferation mechanistically underlies neuronal damage in EcoHIV and control animals. Indeed, microglia proliferation accounts for 42-68.6% of the variance in synaptic dysfunction. Collectively, microglia proliferation induced by chronic HIV-1 viral protein exposure may underlie the profound synaptodendritic alterations in HIV-1. Understanding how microglia are involved in the pathogenesis of HAND and HIV-1-associated affective disorders affords a key target for the development of novel therapeutics.

14.
Res Sq ; 2023 Oct 16.
Artículo en Inglés | MEDLINE | ID: mdl-37886577

RESUMEN

Mixed glia are infiltrated with HIV-1 virus early in the course of infection leading to the development of a persistent viral reservoir in the central nervous system. Modification of the HIV-1 genome using gene editing techniques, including CRISPR/Cas9, has shown great promise towards eliminating HIV-1 viral reservoirs; whether these techniques are capable of removing HIV-1 viral proteins from mixed glia, however, has not been systematically evaluated. Herein, the efficacy of adeno-associated virus 9 (AAV9)-CRISPR/Cas9 gene editing for eliminating HIV-1 mRNA from cortical mixed glia was evaluated in vitro and in vivo. In vitro, a within-subjects experimental design was utilized to treat mixed glia isolated from neonatal HIV-1 transgenic (Tg) rats with varying doses (0, 0.9, 1.8, 2.7, 3.6, 4.5, or 5.4 µL) of CRISPR/Cas9 for 72 hours. Dose-dependent decreases in the number of HIV-1 mRNA, quantified using an innovative in situ hybridization technique, were observed in a subset (i.e., n=5 out of 8) of primary mixed glia. In vivo, HIV-1 Tg rats were retro-orbitally inoculated with CRISPR/Cas9 for two weeks, whereby treatment resulted in profound excision (i.e., approximately 53.2%) of HIV-1 mRNA from the mPFC. Given incomplete excision of the HIV-1 viral genome, the clinical relevance of HIV-1 mRNA knockdown for eliminating neurocognitive impairments was evaluated via examination of temporal processing, a putative neurobehavioral mechanism underlying HIV-1 associated neurocognitive disorders (HAND). Indeed, treatment with CRISPR/Cas9 partially restored the developmental trajectory of temporal processing. Proof-of-concept studies, therefore, support the susceptibility of mixed glia to gene editing and the potential of CRISPR/Cas9 to serve as a novel therapeutic strategy for HAND, even in the absence of full viral eradication.

15.
bioRxiv ; 2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37693534

RESUMEN

Adverse neurological and psychiatric outcomes, collectively termed the post-acute sequelae of SARS-CoV-2 infection (PASC), persist in adults clinically recovered from COVID-19. Effective therapeutic interventions are fundamental to reducing the burden of PASC, necessitating an investigation of the pathophysiology underlying the debilitating neurological symptoms associated with the condition. Herein, eight non-human primates (Wild-Caught African Green Monkeys, n =4; Indian Rhesus Macaques, n =4) were inoculated with the SARS-CoV-2 isolate USA-WA1/2020 by either small particle aerosol or via multiple routes. At necropsy, tissue from the olfactory epithelium and pyriform cortex/amygdala of SARS-CoV-2 infected non-human primates were collected for ribonucleic acid in situ hybridization (i.e., RNAscope). First, angiotensin-converting enzyme 2 (ACE2) and transmembrane serine protease 2 (TMPRSS2) mRNA are downregulated in the pyriform cortex/amygdala of non-human primates clinically recovered from SARS-CoV-2 inoculation relative to wildtype controls. Second, abundant SARS-CoV-2 mRNA was detected in clinically recovered non-human primates; mRNA which is predominantly harbored in pericytes. Collectively, examination of post-mortem pyriform cortex/amygdala brain tissue of non-human primates clinically recovered from SARS-CoV-2 infection revealed two early pathophysiological mechanisms potentially underlying PASC. Indeed, therapeutic interventions targeting the downregulation of ACE2, decreased expression of TMPRSS2, and/or persistent infection of pericytes in the central nervous system may effectively mitigate the debilitating symptoms of PASC.

16.
Pharmacol Biochem Behav ; 229: 173592, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37390973

RESUMEN

Approximately 50 % of the individuals living with human immunodeficiency virus type 1 (HIV-1) are plagued by debilitating neurocognitive impairments (NCI) and/or affective alterations. Sizeable alterations in the composition of the gut microbiome, or gastrointestinal dysbiosis, may underlie, at least in part, the NCI, apathy, and/or depression observed in this population. Herein, two interrelated aims will be critically addressed, including: 1) the evidence for, and functional implications of, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals; and 2) the potential for therapeutically targeting the consequences of this dysbiosis for the treatment of HIV-1-associated NCI and affective alterations. First, gastrointestinal microbiome dysbiosis in HIV-1 seropositive individuals is characterized by decreased alpha (α) diversity, a decreased relative abundance of bacterial species belonging to the Bacteroidetes phylum, and geographic-specific alterations in Bacillota (formerly Firmicutes) spp. Fundamentally, changes in the relative abundance of Bacteroidetes and Bacillota spp. may underlie, at least in part, the deficits in γ-aminobutyric acid and serotonin neurotransmission, as well as prominent synaptodendritic dysfunction, observed in this population. Second, there is compelling evidence for the therapeutic utility of targeting synaptodendritic dysfunction as a method to enhance neurocognitive function and improve motivational dysregulation in HIV-1. Further research is needed to determine whether the therapeutics enhancing synaptic efficacy exert their effects by altering the gut microbiome. Taken together, understanding gastrointestinal microbiome dysbiosis resulting from chronic HIV-1 viral protein exposure may afford insight into the mechanisms underlying HIV-1-associated neurocognitive and/or affective alterations; mechanisms which can be subsequently targeted via novel therapeutics.


Asunto(s)
Microbioma Gastrointestinal , VIH-1 , Humanos , Disbiosis/complicaciones , Disbiosis/microbiología
17.
Viruses ; 14(6)2022 06 10.
Artículo en Inglés | MEDLINE | ID: mdl-35746739

RESUMEN

The prevalence of HIV-1 associated neurocognitive disorders (HAND) is significantly greater in older, relative to younger, HIV-1 seropositive individuals; the neural pathogenesis of HAND in older HIV-1 seropositive individuals, however, remains elusive. To address this knowledge gap, abnormal protein aggregates (i.e., ß-amyloid) were investigated in the brains of aging (>12 months of age) HIV-1 transgenic (Tg) rats. In aging HIV-1 Tg rats, double immunohistochemistry staining revealed abnormal intraneuronal ß-amyloid accumulation in the prefrontal cortex (PFC) and hippocampus, relative to F344/N control rats. Notably, in HIV-1 Tg animals, increased ß-amyloid accumulation occurred in the absence of any genotypic changes in amyloid precursor protein (APP). Furthermore, no clear amyloid plaque deposition was observed in HIV-1 Tg animals. Critically, ß-amyloid was co-localized with neurons in the cortex and hippocampus, supporting a potential mechanism underlying synaptic dysfunction in the HIV-1 Tg rat. Consistent with these neuropathological findings, HIV-1 Tg rats exhibited prominent alterations in the progression of temporal processing relative to control animals; temporal processing relies, at least in part, on the integrity of the PFC and hippocampus. In addition, in post-mortem HIV-1 seropositive individuals with HAND, intraneuronal ß-amyloid accumulation was observed in the dorsolateral PFC and hippocampal dentate gyrus. Consistent with observations in the HIV-1 Tg rat, no amyloid plaques were found in these post-mortem HIV-1 seropositive individuals with HAND. Collectively, intraneuronal ß-amyloid aggregation observed in the PFC and hippocampus of HIV-1 Tg rats supports a potential factor underlying HIV-1 associated synaptodendritic damage. Further, the HIV-1 Tg rat provides a biological system to model HAND in older HIV-1 seropositive individuals.


Asunto(s)
Enfermedad de Alzheimer , VIH-1 , Anciano , Envejecimiento , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides , Animales , Encéfalo/patología , Modelos Animales de Enfermedad , VIH-1/genética , VIH-1/metabolismo , Hipocampo/patología , Humanos , Ratones , Ratones Transgénicos , Ratas , Ratas Endogámicas F344 , Ratas Transgénicas
18.
Exp Neurol ; 357: 114174, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35863502

RESUMEN

Individuals living with human immunodeficiency virus type 1 (HIV-1) exhibit an increased prevalence of neuropsychiatric comorbities (e.g., apathy) relative to their seronegative counterparts. Given the profound functional consequences associated with apathy, characterizing the multidimensional neuropsychiatric syndrome, and associated neural mechanisms, following chronic HIV-1 viral protein exposure remains a critical need. HIV-1-associated apathy was examined by quantifying goal-directed behaviors, indexed using voluntary wheel running, during the diurnal and nocturnal cycle. Apathetic behaviors in the HIV-1 transgenic (Tg) rat were characterized by a profound decrease in the number of running bouts during both the diurnal and nocturnal cycle, supporting a prominent deficit in the self-initiation of spontaneous behaviors. Additionally, HIV-1 Tg animals exhibited a decreased reinforcing efficacy of voluntary wheel running during the nocturnal cycle. Following the completion of voluntary wheel running, synaptic dysfunction in medium spiny neurons (MSNs) of the nucleus accumbens core (NAcc) was examined as a potential neural mechanism underlying HIV-1-associated apathy. HIV-1 Tg animals displayed prominent synaptic dysfunction in MSNs of the NAcc, characterized by enhanced dendritic branching complexity and a population shift towards an immature dendritic spine phenotype relative to control animals. Synaptic dysfunction, which accounted for 42.0% to 68.5% of the variance in the number of running bouts, was strongly associated with the self-initiation of spontaneous behaviors. Establishment of the relationship between synaptic dysfunction and apathy affords a key target for the development of novel therapeutics and cure strategies for affective alterations associated with HIV-1.


Asunto(s)
Apatía , VIH-1 , Animales , Apatía/fisiología , Objetivos , VIH-1/genética , Humanos , Actividad Motora , Núcleo Accumbens/fisiología , Ratas , Ratas Transgénicas
19.
BMC Neurosci ; 12: 38, 2011 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-21569253

RESUMEN

BACKGROUND: Long-term primary neuronal cultures are a useful tool for the investigation of biochemical processes associated with neuronal senescence. Improvements in available technology make it possible to observe maturation of neural cells isolated from different regions of the rodent brain over a prolonged period in vitro. Existing experimental evidence suggests that cellular aging occurs in mature, long-term, primary neuronal cell cultures. However, detailed studies of neuronal development in vitro are needed to demonstrate the validity of long-term cell culture-based models for investigation of the biochemical mechanisms of in vitro neuronal development and senescence. RESULTS: In the current study, neuron-enriched hippocampal cell cultures were used to analyze the differentiation and degeneration of hippocampal neurons over a two month time period. The expression of different neuronal and astroglial biomarkers was used to determine the cytochemical characteristics of hippocampal cells in long-term cultures of varying ages. It was observed that the expression of the intermediate filament nestin was absent from cultures older than 21 days in vitro (DIV), and the expression of neuronal or astrocytic markers appeared to replace nestin. Additionally, morphological evaluations of neuronal integrity and Hoescht staining were used to assess the cellular conditions in the process of hippocampal culture development and aging. It was found that there was an increase in endogenous production of Aß(1-42) and an increase in the accumulation of Congo Red-binding amyloidal aggregates associated with the aging of neurons in primary culture. In vitro changes in the morphology of co-existing astrocytes and cell culture age-dependent degeneration of neurodendritic network resemble features of in vivo brain aging at the cellular level. CONCLUSION: In conclusion, this study suggests that long-term primary CNS culture is a viable model for the study of basic mechanisms and effective methods to decelerate the process of neuronal senescence.


Asunto(s)
Envejecimiento/patología , Hipocampo/patología , Neuronas/patología , Placa Amiloide/patología , Envejecimiento/metabolismo , Péptidos beta-Amiloides/metabolismo , Animales , Astrocitos/metabolismo , Astrocitos/patología , Células Cultivadas , Hipocampo/metabolismo , Neuronas/metabolismo , Fragmentos de Péptidos/metabolismo , Placa Amiloide/metabolismo , Ratas , Ratas Sprague-Dawley
20.
Cells ; 10(11)2021 11 05.
Artículo en Inglés | MEDLINE | ID: mdl-34831259

RESUMEN

Due to the widespread access to, and implementation of, combination antiretroviral therapy, individuals perinatally infected with human immunodeficiency virus type 1 (HIV-1) are living into adolescence and adulthood. Perinatally infected adolescents living with HIV-1 (pALHIV) are plagued by progressive, chronic neurocognitive impairments; the pathophysiological mechanisms underlying these deficits, however, remain understudied. A longitudinal experimental design from postnatal day (PD) 30 to PD 180 was utilized to establish the development of pyramidal neurons, and associated dendritic spines, from layers II-III of the medial prefrontal cortex (mPFC) in HIV-1 transgenic (Tg) and control animals. Three putative neuroinflammatory markers (i.e., IL-1ß, IL-6, and TNF-α) were evaluated early in development (i.e., PD 30) as a potential mechanism underlying synaptic dysfunction in the mPFC. Constitutive expression of HIV-1 viral proteins induced prominent neurodevelopmental alterations and progressive synaptodendritic dysfunction, independent of biological sex, in pyramidal neurons from layers II-III of the mPFC. From a neurodevelopmental perspective, HIV-1 Tg rats exhibited prominent deficits in dendritic and synaptic pruning. With regards to progressive synaptodendritic dysfunction, HIV-1 Tg animals exhibited an age-related population shift towards dendritic spines with decreased volume, increased backbone length, and decreased head diameter; parameters associated with a more immature dendritic spine phenotype. There was no compelling evidence for neuroinflammation in the mPFC during early development. Collectively, progressive neuronal and dendritic spine dysmorphology herald synaptodendritic dysfunction as a key neural mechanism underlying chronic neurocognitive impairments in pALHIV.


Asunto(s)
VIH-1/fisiología , Corteza Prefrontal/crecimiento & desarrollo , Corteza Prefrontal/virología , Proteínas Virales/metabolismo , Envejecimiento/patología , Animales , Espinas Dendríticas/metabolismo , Modelos Biológicos , Células Piramidales/patología , Células Piramidales/virología , Ratas Endogámicas F344 , Ratas Transgénicas , Sinapsis/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA