Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Digit Imaging ; 35(2): 374-384, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35083619

RESUMEN

This study proposed and evaluated a two-dimensional (2D) slice-based multi-view U-Net (MVU-Net) architecture for skull stripping. The proposed model fused all three TI-weighted brain magnetic resonance imaging (MRI) views, i.e., axial, coronal, and sagittal. This 2D method performed equally well as a three-dimensional (3D) model of skull stripping. while using fewer computational resources. The predictions of all three views were fused linearly, producing a final brain mask with better accuracy and efficiency. Meanwhile, two publicly available datasets-the Internet Brain Segmentation Repository (IBSR) and Neurofeedback Skull-stripped (NFBS) repository-were trained and tested. The MVU-Net, U-Net, and skip connection U-Net (SCU-Net) architectures were then compared. For the IBSR dataset, compared to U-Net and SC-UNet, the MVU-Net architecture attained better mean dice score coefficient (DSC), sensitivity, and specificity, at 0.9184, 0.9397, and 0.9908, respectively. Similarly, the MVU-Net architecture achieved better mean DSC, sensitivity, and specificity, at 0.9681, 0.9763, and 0.9954, respectively, than the U-Net and SC-UNet for the NFBS dataset.


Asunto(s)
Procesamiento de Imagen Asistido por Computador , Neurorretroalimentación , Humanos , Procesamiento de Imagen Asistido por Computador/métodos , Internet , Imagen por Resonancia Magnética/métodos , Cráneo/diagnóstico por imagen
2.
J Digit Imaging ; 33(6): 1443-1464, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32666364

RESUMEN

Several neuroimaging processing applications consider skull stripping as a crucial pre-processing step. Due to complex anatomical brain structure and intensity variations in brain magnetic resonance imaging (MRI), an appropriate skull stripping is an important part. The process of skull stripping basically deals with the removal of the skull region for clinical analysis in brain segmentation tasks, and its accuracy and efficiency are quite crucial for diagnostic purposes. It requires more accurate and detailed methods for differentiating brain regions and the skull regions and is considered as a challenging task. This paper is focused on the transition of the conventional to the machine- and deep-learning-based automated skull stripping methods for brain MRI images. It is observed in this study that deep learning approaches have outperformed conventional and machine learning techniques in many ways, but they have their limitations. It also includes the comparative analysis of the current state-of-the-art skull stripping methods, a critical discussion of some challenges, model of quantifying parameters, and future work directions.


Asunto(s)
Aprendizaje Profundo , Cráneo , Algoritmos , Encéfalo/diagnóstico por imagen , Humanos , Procesamiento de Imagen Asistido por Computador , Imagen por Resonancia Magnética , Neuroimagen , Cráneo/diagnóstico por imagen
3.
J Imaging Inform Med ; 2024 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-38831189

RESUMEN

A radiology report plays a crucial role in guiding patient treatment, but writing these reports is a time-consuming task that demands a radiologist's expertise. In response to this challenge, researchers in the subfields of artificial intelligence for healthcare have explored techniques for automatically interpreting radiographic images and generating free-text reports, while much of the research on medical report creation has focused on image captioning methods without adequately addressing particular report aspects. This study introduces a Conditional Self Attention Memory-Driven Transformer model for generating radiological reports. The model operates in two phases: initially, a multi-label classification model, utilizing ResNet152 v2 as an encoder, is employed for feature extraction and multiple disease diagnosis. In the second phase, the Conditional Self Attention Memory-Driven Transformer serves as a decoder, utilizing self-attention memory-driven transformers to generate text reports. Comprehensive experimentation was conducted to compare existing and proposed techniques based on Bilingual Evaluation Understudy (BLEU) scores ranging from 1 to 4. The model outperforms the other state-of-the-art techniques by increasing the BLEU 1 (0.475), BLEU 2 (0.358), BLEU 3 (0.229), and BLEU 4 (0.165) respectively. This study's findings can alleviate radiologists' workloads and enhance clinical workflows by introducing an autonomous radiological report generation system.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA