Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 19(3): 1944-1954, 2019 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-30742440

RESUMEN

Here, we report on the large-scale one-step preparation, characterization, and application of three-dimensional spongelike silicon alloy composite anodes, based on the catalyst-free growth of porous silicon nanonetworks directly onto highly conductive and flexible open-structure stainless steel current collectors. By the use of a key hydrofluoric-acid-based chemical pretreatment process, the originally noncatalytic stainless steel matrix becomes nanoporous and highly self-catalytic, thus greatly promoting the formation of a silicon spongelike network at unexpectedly low growth temperatures, 380-460 °C. Modulation of this unique chemical pretreatment allows control over the morphology and loading properties of the resulting silicon network. The spongelike silicon network growth is capable of completely filling the openings of the three-dimensional stainless steel substrates, thus allowing full control over the active material loading, while conserving high mechanical and chemical stabilities. Furthermore, extremely high silicon loadings are reached because of the supercatalytic nanoporous nature of the chemically treated stainless steel substrates (0.5-20 mg/cm2). This approach leads to the realization of highly electrically conductive Si-stainless steel composite anodes, due to the formation of silicon-network-to-stainless-steel contact sections composed of highly conductive metal silicide alloys, thus improving the electrical interface and mechanical stability between the silicon active network and the highly conductive metal current collector. More importantly, our one-step cost-effective growth approach allows the large-scale preparation of highly homogeneous ultrathin binder-free anodes, up to 2 m long, using a home-built CVD setup. Finally, we made use of these novel anodes for the assembly of Li-ion batteries exhibiting stable cycle life (cycled for over 500 cycles with <50% capacity loss at 0.1 mA), high gravimetric capacity (>3500 mA h/gSi at 0.1 mA/cm2), low irreversible capacity (<10%), and high Coulombic efficiency (>99.5%). Notably, these Si spongelike composite anodes of novel architecture meet the requirements of lithium batteries for future portable and electric-vehicle applications.

2.
RSC Adv ; 11(43): 26586-26593, 2021 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-35479980

RESUMEN

High-capacity materials are required in order to address the environmental concerns of our modern society, ultimately leading to safe and eco-friendly high-energy batteries. Silicon-nanowire anodes (SiNWs) have the potential to significantly increase the energy density of lithium-ion batteries (LIBs). In order to improve the mechanical durability and the electrochemical performance of SiNW-anodes, we fabricated a silicon-nickel (SiNi) composite anode by electroless deposition of nickel, followed by annealing at high temperature to obtain nickel silicides of different content and composition. The morphology of SiNi-alloy anodes was examined by SEM, in situ TEM and EDS methods in order to understand how different deposition protocols affect the coating of the silicon nanowires. The formation of Ni-silicides was found to occur during thermal treatment at 900 °C. Despite the incomplete shell coverage of SiNWs composed of multiple phases and grains, the electrochemical performance of binder-free and conducting-additive-free SiNi-alloy anodes showed stable electrochemical behavior and higher capacity retention compared to the pristine SiNW anode. Li/SiNW-SiNi x cells ran at C/2 rate for 200 reversible cycles, exhibiting 0.1%/cycle capacity loss after completion of the SEI formation.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA