Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Membranes (Basel) ; 14(8)2024 Aug 06.
Artículo en Inglés | MEDLINE | ID: mdl-39195423

RESUMEN

A conventional hydrocyclones is a versatile equipment with a high processing capacity and low maintenance cost. Currently, several studies aim to alter the typical structure of the conventional hydrocyclone in order to modify its performance and purpose. For this, filtering hydrocyclones have emerged, where a porous membrane replaces the conic or cylindrical wall. During the operation of this equipment, in addition to the traditionally observed streams (feed, underflow, and overflow), there is a liquid stream resulting from the filtration process, commonly referred to as filtrate. This work proposes to numerically investigate the solid particle/liquid water separation process in a filtering hydrocyclone using the commercial software Ansys CFX® 15.0. The proposed mathematical model for the study considers three-dimensional, steady state and turbulent flow, using the Eulerian-Eulerian approach and the Shear Stress Transport (SST) turbulence model. This study presents and analyzes the volume fraction, velocity, and pressure fields, along with flowlines and velocity profiles. The results indicate that the proposed model effectively captures the fluid dynamic behavior within the filtering hydrocyclone, highlighting higher pressures near the porous membrane and a higher concentration of solid particles in the conical region, with water being more concentrated in the cylindrical part of the hydrocyclone. Additionally, the findings show that the volumetric flow rate of the filtrate significantly influences the internal flow dynamics, with conventional hydrocyclones demonstrating higher pressure gradients compared to the proposed filtering hydrocyclone.

2.
Membranes (Basel) ; 12(7)2022 Jul 15.
Artículo en Inglés | MEDLINE | ID: mdl-35877913

RESUMEN

Due to the increase in the number of people affected by chronic renal failure, the demand for hemodialysis treatment has increased considerably over the years. In this sense, theoretical and experimental studies to improve the equipment (hemodialyzer) are extremely important, due to their potential impact on the patient's life quality undergoing treatment. To contribute to this research line, this work aims to study the fluid behavior inside a hollow fiber dialyzer using computational fluid dynamics. In that new approach, the blood is considered as multiphase fluid and the membrane as an extra flow resistance in the porous region (momentum sink). The numerical study of the hemodialysis process was based on the development of a mathematical model that allowed analyzing the performance of the system using Ansys® Fluent software. The predicted results were compared with results reported in the literature and a good concordance was obtained. The simulation results showed that the proposed model can predict the fluid behavior inside the hollow fiber membrane adequately. In addition, it was found that the clearance decreases with increasing radial viscous resistance, with greater permeations in the vicinity of the lumen inlet region, as well as the emergence of the retrofiltration phenomenon, characteristic of this type of process. Herein, velocity, pressure, and volumetric fraction fields are presented and analyzed.

3.
Polymers (Basel) ; 14(6)2022 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-35335475

RESUMEN

In this work, recycled poly(ethylene terephthalate) (PETR) was blended with virgin high-density polyethylene (HDPE) in an internal mixer in an attempt to obtain a material with improved properties. A compatibilizer (PE-g-MA) and a chain extender (Joncryl) were added to the PETR/HDPE blend and the rheological and thermal properties of the modified and unmodified blends as well as those of virgin PET with virgin HDPE (PETV/HDPE). All the blends were characterized by torque rheometry, differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA). The data obtained indicate that the incorporation of either the chain extender or the compatibilizer agent led to increases in torque (and hence in viscosity) of the blend compared to that of the neat polymers. The joint incorporation of the chain extender and compatibilizer further increased the viscosity of the systems. Their effect on the crystallinity parameters of HDPE was minimal, but they reduced the crystallinity and crystallization temperature of virgin and recycled PET in the blends. The thermal stability of the PETR/HDPE blend was similar to that of the PETV/HDPE blend, and it was not affected by the incorporation of the chain extender and/or compatibilizer.

4.
Membranes (Basel) ; 11(2)2021 Feb 08.
Artículo en Inglés | MEDLINE | ID: mdl-33567608

RESUMEN

Wastewater from the oil industry can be considered a dangerous contaminant for the environment and needs to be treated before disposal or re-use. Currently, membrane separation is one of the most used technologies for the treatment of produced water. Therefore, the present work aims to study the process of separating oily water in a module equipped with a ceramic membrane, based on the Eulerian-Eulerian approach and the Shear-Stress Transport (SST k-ω) turbulence model, using the Ansys Fluent® 15.0. The hydrodynamic behavior of the water/oil mixture in the filtration module was evaluated under different conditions of the mass flow rate of the fluid mixture and oil concentration at the entrance, the diameter of the oil particles, and membrane permeability and porosity. It was found that an increase in the feed mass flow rate from 0.5 to 1.5 kg/s significantly influenced transmembrane pressure, that varied from 33.00 to 221.32 kPa. Besides, it was observed that the particle diameter and porosity of the membranes did not influence the performance of the filtration module; it was also verified that increasing the permeability of the membranes, from 3 × 10-15 to 3 × 10-13 m2, caused transmembrane pressure reduction of 22.77%. The greater the average oil concentration at the permeate (from 0.021 to 0.037 kg/m3) and concentrate (from 1.00 to 1.154 kg/m3) outlets, the higher the average flow rate of oil at the permeate outlets. These results showed that the filter separator has good potential for water/oil separation.

5.
Membranes (Basel) ; 11(2)2021 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-33499045

RESUMEN

This research aims to study the process of separating water contaminated with oil using a hydrocyclone with a porous wall (membrane), containing two tangential inlets and two concentric outlets (concentrate and permeate), at the base of the equipment. For the study, the computational fluid dynamics technique was used in a Eulerian-Eulerian approach to solve the mass and linear momentum conservation equations and the turbulence model. The effects of the concentration polarization layer thickness and membrane rejection coefficient on the permeate flow, hydrodynamic behavior of the fluids inside the hydrocyclone, and equipment performance were evaluated. Results of the velocity, transmembrane pressure and oil concentration profiles along the equipment, and hydrocyclone performance are presented and analyzed. The results confirmed the effect of the membrane rejection coefficient on the equipment performance and the high potential of the hydrocyclone with a porous wall to be used in the oil-water mixture separation.

6.
Membranes (Basel) ; 10(11)2020 Nov 18.
Artículo en Inglés | MEDLINE | ID: mdl-33217918

RESUMEN

In the oil industry and academy, the treatment of water contaminated with oil using conventional hydrocyclones and membranes has been an alternative to meet the requirements established by environmental control agencies. However, such equipment is not fully efficient in the treatment of much diluted oily water, with both presenting restrictions in their performance. In this sense, the present work proposes to study the separation process of oily water using a new configuration of hydrocyclone, equipped with a porous ceramic membrane in the conical part's wall (filtering hydrocyclone). For the theoretical study, a Eulerian-Eulerian approach was applied to solve the mass and momentum conservation equations, and the turbulence model, using the computational fluid dynamics technique. The results of the velocity, pressure and volumetric fraction of the involved phases, and the separation performance of the hydrocyclone, are presented, analyzed, and compared with those obtained with a conventional hydrocyclone. The results confirmed the high potential of the proposed equipment to be used in the separation of the water and oil mixture.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA