Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
J Cell Biochem ; 124(8): 1173-1185, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-37357420

RESUMEN

Sialyl Lewis X (sLex ) antigen is a fucosylated cell-surface glycan that is normally involved in cell-cell interactions. The enhanced expression of sLex on cell surface glycans, which is attributed to the upregulation of fucosyltransferase 6 (FUT6), has been implicated in facilitating metastasis in human colorectal, lung, prostate, and oral cancers. The role that the upregulated FUT6 plays in the progression of tumor to malignancy, with reduced survival rates, makes it a potential target for anticancer drugs. Unfortunately, the lack of experimental structures for FUT6 has hampered the design and development of its inhibitors. In this study, we used in silico techniques to identify potential FUT6 inhibitors. We first modeled the three-dimensional structure of human FUT6 using AlphaFold. Then, we screened the natural compound libraries from the COCONUT database to sort out potential natural products (NPs) with best affinity toward the FUT6 model. As a result of these simulations, we identified three NPs for which we predicted binding affinities and interaction patterns quite similar to those we calculated for two experimentally tested FUT6 inhibitors, that is, fucose mimetic-1 and a GDP-triazole derived compound. We also performed molecular dynamics (MD) simulations for the FUT6 complexes with identified NPs, to investigate their stability. Analysis of the MD simulations showed that the identified NPs establish stable contacts with FUT6 under dynamics conditions. On these grounds, the three screened compounds appear as promising natural alternatives to experimentally tested FUT6 synthetic inhibitors, with expected comparable binding affinity. This envisages good prospects for future experimental validation toward FUT6 inhibition.


Asunto(s)
Fucosiltransferasas , Neoplasias , Humanos , Masculino , Descubrimiento de Drogas , Fucosiltransferasas/antagonistas & inhibidores , Fucosiltransferasas/metabolismo , Glicosilación , Antígeno Sialil Lewis X/metabolismo
2.
Vaccines (Basel) ; 11(2)2023 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-36851241

RESUMEN

Candida dubliniensis is an opportunistic pathogen associated with oral and invasive fungal infections in immune-compromised individuals. Furthermore, the emergence of C. dubliniensis antifungal drug resistance could exacerbate its treatment. Hence, in this study a multi-epitope vaccine candidate has been designed using an immunoinformatics approach by targeting C. dubliniensis secreted aspartyl proteinases (SAP) proteins. In silico tools have been utilized to predict epitopes and determine their allergic potential, antigenic potential, toxicity, and potential to elicit interleukin-2 (IL2), interleukin-4 (IL4), and IFN-γ. Using the computational tools, eight epitopes have been predicted that were then linked with adjuvants for final vaccine candidate development. Computational immune simulation has depicted that the immunogen designed emerges as a strong immunogenic candidate for a vaccine. Further, molecular docking and molecular dynamics simulation analyses revealed stable interactions between the vaccine candidate and the human toll-like receptor 5 (TLR5). Finally, immune simulations corroborated the promising candidature of the designed vaccine, thus calling for further in vivo investigation.

3.
Front Vet Sci ; 10: 1280273, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-38192725

RESUMEN

Feline infectious peritonitis (FIP) is a grave and frequently lethal ailment instigated by feline coronavirus (FCoV) in wild and domestic feline species. The spike (S) protein of FCoV assumes a critical function in viral ingress and infection, thereby presenting a promising avenue for the development of a vaccine. In this investigation, an immunoinformatics approach was employed to ascertain immunogenic epitopes within the S-protein of FIP and formulate an innovative vaccine candidate. By subjecting the amino acid sequence of the FIP S-protein to computational scrutiny, MHC-I binding T-cell epitopes were predicted, which were subsequently evaluated for their antigenicity, toxicity, and allergenicity through in silico tools. Our analyses yielded the identification of 11 potential epitopes capable of provoking a robust immune response against FIPV. Additionally, molecular docking analysis demonstrated the ability of these epitopes to bind with feline MHC class I molecules. Through the utilization of suitable linkers, these epitopes, along with adjuvants, were integrated to design a multi-epitope vaccine candidate. Furthermore, the stability of the interaction between the vaccine candidate and feline Toll-like receptor 4 (TLR4) was established via molecular docking and molecular dynamics simulation analyses. This suggests good prospects for future experimental validation to ascertain the efficacy of our vaccine candidate in inducing a protective immune response against FIP.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA