Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
Intervalo de año de publicación
1.
Phys Rev Lett ; 132(12): 126502, 2024 Mar 22.
Artículo en Inglés | MEDLINE | ID: mdl-38579201

RESUMEN

LiCu_{3}O_{3} is an antiferromagnetic mixed valence cuprate where trilayers of edge-sharing Cu(II)O (3d^{9}) are sandwiched in between planes of Cu(I) (3d^{10}) ions, with Li stochastically substituting Cu(II). Angle-resolved photoemission spectroscopy (ARPES) and density functional theory reveal two insulating electronic subsystems that are segregated in spite of sharing common oxygen atoms: a Cu d_{z^{2}}/O p_{z} derived valence band (VB) dispersing on the Cu(I) plane, and a Cu 3d_{x^{2}-y^{2}}/O 2p_{x,y} derived Zhang-Rice singlet (ZRS) band dispersing on the Cu(II)O planes. First-principle analysis shows the Li substitution to stabilize the insulating ground state, but only if antiferromagnetic correlations are present. Li further induces substitutional disorder and a 2D electron glass behavior in charge transport, reflected in a large 530 meV Coulomb gap and a linear suppression of VB spectral weight at E_{F} that is observed by ARPES. Surprisingly, the disorder leaves the Cu(II)-derived ZRS largely unaffected. This indicates a local segregation of Li and Cu atoms onto the two separate corner-sharing Cu(II)O_{2} sub-lattices of the edge-sharing Cu(II)O planes, and highlights the ubiquitous resilience of the entangled two hole ZRS entity against impurity scattering.

2.
Phys Rev Lett ; 125(7): 076401, 2020 Aug 14.
Artículo en Inglés | MEDLINE | ID: mdl-32857568

RESUMEN

In nodal-line semimetals, linearly dispersing states form Dirac loops in the reciprocal space with a high degree of electron-hole symmetry and a reduced density of states near the Fermi level. The result is reduced electronic screening and enhanced correlations between Dirac quasiparticles. Here we investigate the electronic structure of ZrSiSe, by combining time- and angle-resolved photoelectron spectroscopy with ab initio density functional theory (DFT) complemented by an extended Hubbard model (DFT+U+V) and by time-dependent DFT+U+V. We show that electronic correlations are reduced on an ultrashort timescale by optical excitation of high-energy electrons-hole pairs, which transiently screen the Coulomb interaction. Our findings demonstrate an all-optical method for engineering the band structure of a quantum material.

3.
Phys Rev Lett ; 121(13): 136401, 2018 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-30312078

RESUMEN

Using soft x-ray angle-resolved photoemission spectroscopy we probed the bulk electronic structure of T_{d}-MoTe_{2}. We found that on-site Coulomb interaction leads to a Lifshitz transition, which is essential for a precise description of the electronic structure. A hybrid Weyl semimetal state with a pair of energy bands touching at both type-I and type-II Weyl nodes is indicated by comparing the experimental data with theoretical calculations. Unveiling the importance of Coulomb interaction opens up a new route to comprehend the unique properties of MoTe_{2}, and is significant for understanding the interplay between correlation effects, strong spin-orbit coupling and superconductivity in this van der Waals material.

5.
Phys Rev Lett ; 118(17): 176404, 2017 Apr 28.
Artículo en Inglés | MEDLINE | ID: mdl-28498707

RESUMEN

We measured, by angle-resolved photoemission spectroscopy, the electronic structure of LiCu_{2}O_{2}, a mixed-valence cuprate where planes of Cu(I) (3d^{10}) ions are sandwiched between layers containing one-dimensional edge-sharing Cu(II) (3d^{9}) chains. We find that the Cu(I)- and Cu(II)-derived electronic states form separate electronic subsystems, in spite of being coupled by bridging O ions. The valence band, of the Cu(I) character, disperses within the charge-transfer gap of the strongly correlated Cu(II) states, displaying an unprecedented 250% broadening of the bandwidth with respect to the predictions of density functional theory. Our observation is at odds with the widely accepted tenet of many-body theory that correlation effects generally yield narrower bands and larger electron masses and suggests that present-day electronic structure techniques provide an intrinsically inappropriate description of ligand-to-d hybridizations in late transition metal oxides.

6.
Phys Rev Lett ; 117(23): 237601, 2016 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-27982645

RESUMEN

The complex electronic properties of ZrTe_{5} have recently stimulated in-depth investigations that assigned this material to either a topological insulator or a 3D Dirac semimetal phase. Here we report a comprehensive experimental and theoretical study of both electronic and structural properties of ZrTe_{5}, revealing that the bulk material is a strong topological insulator (STI). By means of angle-resolved photoelectron spectroscopy, we identify at the top of the valence band both a surface and a bulk state. The dispersion of these bands is well captured by ab initio calculations for the STI case, for the specific interlayer distance measured in our x-ray diffraction study. Furthermore, these findings are supported by scanning tunneling spectroscopy revealing the metallic character of the sample surface, thus confirming the strong topological nature of ZrTe_{5}.

7.
Phys Rev Lett ; 115(9): 096404, 2015 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-26371668

RESUMEN

We investigate the polaronic ground state of anatase TiO2 by bulk-sensitive resonant inelastic x-ray spectroscopy (RIXS) at the Ti L3 edge. We find that the formation of the polaron cloud involves a single 95 meV phonon along the c axis, in addition to the 108 meV ab-plane mode previously identified by photoemission. The coupling strength to both modes is the same within error bars, and it is unaffected by the carrier density. These data establish RIXS as a directional bulk-sensitive probe of electron-phonon coupling in solids.

8.
Phys Rev Lett ; 115(20): 207402, 2015 Nov 13.
Artículo en Inglés | MEDLINE | ID: mdl-26613470

RESUMEN

We report on the temperature dependence of the ZrTe(5) electronic properties, studied at equilibrium and out of equilibrium, by means of time and angle resolved photoelectron spectroscopy. Our results unveil the dependence of the electronic band structure across the Fermi energy on the sample temperature. This finding is regarded as the dominant mechanism responsible for the anomalous resistivity observed at T*∼160 K along with the change of the charge carrier character from holelike to electronlike. Having addressed these long-lasting questions, we prove the possibility to control, at the ultrashort time scale, both the binding energy and the quasiparticle lifetime of the valence band. These experimental evidences pave the way for optically controlling the thermoelectric and magnetoelectric transport properties of ZrTe(5).

9.
Phys Rev Lett ; 113(10): 107203, 2014 Sep 05.
Artículo en Inglés | MEDLINE | ID: mdl-25238382

RESUMEN

Uniquely in Cu2OSeO3, the Skyrmions, which are topologically protected magnetic spin vortexlike objects, display a magnetoelectric coupling and can be manipulated by externally applied electric (E) fields. Here, we explore the E-field coupling to the magnetoelectric Skyrmion lattice phase, and study the response using neutron scattering. Giant E-field induced rotations of the Skyrmion lattice are achieved that span a range of ∼25°. Supporting calculations show that an E-field-induced Skyrmion distortion lies behind the lattice rotation. Overall, we present a new approach to Skyrmion control that makes no use of spin-transfer torques due to currents of either electrons or magnons.

10.
Phys Rev Lett ; 110(19): 196403, 2013 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-23705725

RESUMEN

Oxygen vacancies created in anatase TiO(2) by UV photons (80-130 eV) provide an effective electron-doping mechanism and induce a hitherto unobserved dispersive metallic state. Angle resolved photoemission reveals that the quasiparticles are large polarons. These results indicate that anatase can be tuned from an insulator to a polaron gas to a weakly correlated metal as a function of doping and clarify the nature of conductivity in this material.

11.
Sci Rep ; 8(1): 10466, 2018 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-29992965

RESUMEN

Magnetic skyrmions are topologically protected spin-whirls currently considered as promising for use in ultra-dense memory devices. Towards achieving this goal, exploration of the skyrmion phase response and under external stimuli is urgently required. Here we show experimentally, and explain theoretically, that in the magnetoelectric insulator Cu2OSeO3 the skyrmion phase can expand and shrink significantly depending on the polarity of a moderate applied electric field (few V/µm). The theory we develop incorporates fluctuations around the mean-field that clarifies precisely how the electric field provides direct control over the free energy difference between the skyrmion and the surrounding conical phase. The quantitative agreement between theory and experiment provides a solid foundation for the development of skyrmionic applications based on magnetoelectric coupling.

12.
Rev Sci Instrum ; 89(4): 046101, 2018 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-29716319

RESUMEN

We present a compact nuclear magnetic resonance (NMR) probe which is compatible with a magnet of a commercial superconducting quantum interference device magnetometer and demonstrate its application to the study of a quantum magnet. We employ trimmer chip capacitors to construct an NMR tank circuit for low temperature measurements. Using a magnetic insulator MoOPO4 with S = 1/2 (Mo5+) as an example, we show that the T-dependence of the circuit is weak enough to allow the ligand-ion NMR study of magnetic systems. Our 31P NMR results are compatible with previous bulk susceptibility and neutron scattering experiments and furthermore reveal unconventional spin dynamics.

13.
Nat Commun ; 8(1): 13, 2017 04 13.
Artículo en Inglés | MEDLINE | ID: mdl-28408739

RESUMEN

Anatase TiO2 is among the most studied materials for light-energy conversion applications, but the nature of its fundamental charge excitations is still unknown. Yet it is crucial to establish whether light absorption creates uncorrelated electron-hole pairs or bound excitons and, in the latter case, to determine their character. Here, by combining steady-state angle-resolved photoemission spectroscopy and spectroscopic ellipsometry with state-of-the-art ab initio calculations, we demonstrate that the direct optical gap of single crystals is dominated by a strongly bound exciton rising over the continuum of indirect interband transitions. This exciton possesses an intermediate character between the Wannier-Mott and Frenkel regimes and displays a peculiar two-dimensional wavefunction in the three-dimensional lattice. The nature of the higher-energy excitations is also identified. The universal validity of our results is confirmed up to room temperature by observing the same elementary excitations in defect-rich samples (doped single crystals and nanoparticles) via ultrafast two-dimensional deep-ultraviolet spectroscopy.Here the authors combine steady-state angle-resolved photoemission spectroscopy, ellipsometry and ultrafast two-dimensional ultraviolet spectroscopy to examine the role of many-body correlations in anatase TiO2, revealing the existence of strongly bound excitons in single crystals and nanoparticles.

14.
J Phys Chem B ; 110(1): 58-61, 2006 Jan 12.
Artículo en Inglés | MEDLINE | ID: mdl-16471499

RESUMEN

This communication reports on the growth of highly uniform KNbO3 nanowires exhibiting a narrow diameter distribution around 60 nm and a length-to-width ratio up to 100. The nanowires were prepared by a hydrothermal route, which enables simple, gram-scale production. A systematic study of the synthesized nanowires in terms of the morphological and chemical characteristics was carried out by varying the temperature-pressure conditions and the composition of the starting mixture. The results indicate that highly uniform single-crystalline nanowires form within a narrow window of the ternary phase diagram of KOH-Nb2O5-H2O.


Asunto(s)
Nanoestructuras/química , Niobio/química , Óxidos/química , Potasio/química , Cristalización , Tamaño de la Partícula , Difracción de Polvo , Presión , Temperatura
15.
Sci Rep ; 6: 21347, 2016 Feb 19.
Artículo en Inglés | MEDLINE | ID: mdl-26892190

RESUMEN

The recent discovery of magnetic skyrmion lattices initiated a surge of interest in the scientific community. Several novel phenomena have been shown to emerge from the interaction of conducting electrons with the skyrmion lattice, such as a topological Hall-effect and a spin-transfer torque at ultra-low current densities. In the insulating compound Cu2OSeO3, magneto-electric coupling enables control of the skyrmion lattice via electric fields, promising a dissipation-less route towards novel spintronic devices. One of the outstanding fundamental issues is related to the thermodynamic stability of the skyrmion lattice. To date, the skyrmion lattice in bulk materials has been found only in a narrow temperature region just below the order-disorder transition. If this narrow stability is unavoidable, it would severely limit applications. Here we present the discovery that applying just moderate pressure on Cu2OSeO3 substantially increases the absolute size of the skyrmion pocket. This insight demonstrates directly that tuning the electronic structure can lead to a significant enhancement of the skyrmion lattice stability. We interpret the discovery by extending the previously employed Ginzburg-Landau approach and conclude that change in the anisotropy is the main driver for control of the size of the skyrmion pocket.

16.
J Phys Chem B ; 109(30): 14331-4, 2005 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-16852802

RESUMEN

The growth kinetics of one-dimensional single-crystalline KNbO(3) nanostructures (nanowires and nanofingers, the latter understood as defective nanowires) prepared by hydrothermal processing routes has been theoretically studied. A model taking into account the cube-based morphology of the nanostructures, their defects as the KOH proportion in the starting solution increases, and the partial depletion of species in the solution at the kink regions is proposed. Such a model allows the morphological evolution of the nanostructures to be successfully reproduced, shedding light on the origin of their highly anisotropic growth.

17.
Nat Commun ; 6: 6334, 2015 Mar 02.
Artículo en Inglés | MEDLINE | ID: mdl-25727797

RESUMEN

The gate-controllable complex conductivity of graphene offers unprecedented opportunities for reconfigurable plasmonics at terahertz and mid-infrared frequencies. However, the requirement of a gating electrode close to graphene and the single 'control knob' that this approach offers limits the practical implementation and performance of these devices. Here we report on graphene stacks composed of two or more graphene monolayers separated by electrically thin dielectrics and present a simple and rigorous theoretical framework for their characterization. In a first implementation, two graphene layers gate each other, thereby behaving as a controllable single equivalent layer but without any additional gating structure. Second, we show that adding an additional gate allows independent control of the complex conductivity of each layer within the stack and provides enhanced control on the stack equivalent complex conductivity. These results are very promising for the development of THz and mid-infrared plasmonic devices with enhanced performance and reconfiguration capabilities.

18.
Rev Sci Instrum ; 85(12): 123903, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25554305

RESUMEN

Time- and angle-resolved photoemission spectroscopy is a powerful technique to study ultrafast electronic dynamics in solids. Here, an innovative optical setup based on a 100-kHz Yb laser source is presented. Exploiting non-collinear optical parametric amplification and sum-frequency generation, ultrashort pump (hν = 1.82 eV) and ultraviolet probe (hν = 6.05 eV) pulses are generated. Overall temporal and instrumental energy resolutions of, respectively, 85 fs and 50 meV are obtained. Time- and angle-resolved measurements on BiTeI semiconductor are presented to show the capabilities of the setup.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA