Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(5)2024 Feb 26.
Artículo en Inglés | MEDLINE | ID: mdl-38473933

RESUMEN

Loss of function of members of the muscleblind-like (MBNL) family of RNA binding proteins has been shown to play a key role in the spliceopathy of RNA toxicity in myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children. MBNL1 and MBNL2 are the most abundantly expressed members in skeletal muscle. A key aspect of DM1 is poor muscle regeneration and repair, leading to dystrophy. We used a BaCl2-induced damage model of muscle injury to study regeneration and effects on skeletal muscle satellite cells (MuSCs) in Mbnl1∆E3/∆E3 and Mbnl2∆E2/∆E2 knockout mice. Similar experiments have previously shown deleterious effects on these parameters in mouse models of RNA toxicity. Muscle regeneration in Mbnl1 and Mbnl2 knockout mice progressed normally with no obvious deleterious effects on MuSC numbers or increased expression of markers of fibrosis. Skeletal muscles in Mbnl1∆E3/∆E3/ Mbnl2∆E2/+ mice showed increased histopathology but no deleterious reductions in MuSC numbers and only a slight increase in collagen deposition. These results suggest that factors beyond the loss of MBNL1/MBNL2 and the associated spliceopathy are likely to play a key role in the defects in skeletal muscle regeneration and deleterious effects on MuSCs that are seen in mouse models of RNA toxicity due to expanded CUG repeats.


Asunto(s)
Empalme Alternativo , Distrofia Miotónica , Humanos , Niño , Ratones , Animales , Distrofia Miotónica/genética , Músculo Esquelético/metabolismo , Ratones Noqueados , Modelos Animales de Enfermedad , ARN/metabolismo , Proteínas de Unión al ARN/metabolismo
2.
Hum Mol Genet ; 30(12): 1111-1130, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-33864373

RESUMEN

RNA toxicity underlies the pathogenesis of disorders such as myotonic dystrophy type 1 (DM1). Muscular dystrophy is a key element of the pathology of DM1. The means by which RNA toxicity causes muscular dystrophy in DM1 is unclear. Here, we have used the DM200 mouse model of RNA toxicity due to the expression of a mutant DMPK 3'UTR mRNA to model the effects of RNA toxicity on muscle regeneration. Using a BaCl2-induced damage model, we find that RNA toxicity leads to decreased expression of PAX7, and decreased numbers of satellite cells, the stem cells of adult skeletal muscle (also known as MuSCs). This is associated with a delay in regenerative response, a lack of muscle fiber maturation and an inability to maintain a normal number of satellite cells. Repeated muscle damage also elicited key aspects of muscular dystrophy, including fat droplet deposition and increased fibrosis, and the results represent one of the first times to model these classic markers of dystrophic changes in the skeletal muscles of a mouse model of RNA toxicity. Using a ligand-conjugated antisense (LICA) oligonucleotide ASO targeting DMPK sequences for the first time in a mouse model of RNA toxicity in DM1, we find that treatment with IONIS 877864, which targets the DMPK 3'UTR mRNA, is efficacious in correcting the defects in regenerative response and the reductions in satellite cell numbers caused by RNA toxicity. These results demonstrate the possibilities for therapeutic interventions to mitigate the muscular dystrophy associated with RNA toxicity in DM1.


Asunto(s)
Desarrollo de Músculos/genética , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos Antisentido/farmacología , ARN/genética , Animales , Modelos Animales de Enfermedad , Humanos , Ratones , Músculo Esquelético/crecimiento & desarrollo , Músculo Esquelético/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/patología , Proteína Quinasa de Distrofia Miotónica/antagonistas & inhibidores , ARN/toxicidad , ARN Mensajero/genética , Regeneración/genética
3.
Hum Mol Genet ; 29(9): 1440-1453, 2020 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-32242217

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common adult muscular dystrophy, is an autosomal dominant disorder caused by an expansion of a (CTG)n tract within the 3' untranslated region (3'UTR) of the dystrophia myotonica protein kinase (DMPK) gene. Mutant DMPK mRNAs are toxic, present in nuclear RNA foci and correlated with a plethora of RNA splicing defects. Cardinal features of DM1 are myotonia and cardiac conduction abnormalities. Using transgenic mice, we have demonstrated that expression of the mutant DMPK 3'UTR is sufficient to elicit these features of DM1. Here, using these mice, we present a study of systemic treatment with an antisense oligonucleotide (ASO) (ISIS 486178) targeted to a non-CUG sequence within the 3'UTR of DMPK. RNA foci and DMPK 3'UTR mRNA levels were reduced in both the heart and skeletal muscles. This correlated with improvements in several splicing defects in skeletal and cardiac muscles. The treatment reduced myotonia and this correlated with increased Clcn1 expression. Furthermore, functional testing showed improvements in treadmill running. Of note, we demonstrate that the ASO treatment reversed the cardiac conduction abnormalities, and this correlated with restoration of Gja5 (connexin 40) expression in the heart. This is the first time that an ASO targeting a non-CUG sequence within the DMPK 3'UTR has demonstrated benefit on the key DM1 phenotypes of myotonia and cardiac conduction defects. Our data also shows for the first time that ASOs may be a viable option for treating cardiac pathology in DM1.


Asunto(s)
Canales de Cloruro/genética , Conexinas/genética , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica/genética , Oligonucleótidos Antisentido/farmacología , Regiones no Traducidas 3'/genética , Animales , Núcleo Celular/genética , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos/genética , Distrofia Miotónica/patología , Distrofia Miotónica/terapia , Proteína Quinasa de Distrofia Miotónica/farmacología , Oligonucleótidos/genética , Oligonucleótidos/farmacología , Oligonucleótidos Antisentido/efectos adversos , Oligonucleótidos Antisentido/genética , ARN Mensajero/genética , Expansión de Repetición de Trinucleótido/genética , Proteína alfa-5 de Unión Comunicante
4.
Hum Mol Genet ; 28(14): 2330-2338, 2019 07 15.
Artículo en Inglés | MEDLINE | ID: mdl-30997488

RESUMEN

Myotonic dystrophy type 1 (DM1) is caused by an expanded (CTG)n tract in the 3'UTR of the DM protein kinase (DMPK) gene. The RNA transcripts produced from the expanded allele sequester or alter the function of RNA-binding proteins (MBNL1, CUGBP1, etc.). The sequestration of MBNL1 results in RNA-splicing defects that contribute to disease. Overexpression of MBNL1 in skeletal muscle has been shown to rescue some of the DM1 features in a mouse model and has been proposed as a therapeutic strategy for DM1. Here, we sought to confirm if overexpression of MBNL1 rescues the phenotypes in a different mouse model of RNA toxicity. Using an inducible mouse model of RNA toxicity in which expression of the mutant DMPK 3'UTR results in RNA foci formation, MBNL1 sequestration, splicing defects, myotonia and cardiac conduction defects, we find that MBNL1 overexpression did not rescue skeletal muscle function nor beneficially affect cardiac conduction. Surprisingly, MBNL1 overexpression also did not rescue myotonia, though variable rescue of Clcn1 splicing and other splicing defects was seen. Additionally, contrary to the previous study, we found evidence for increased muscle histopathology with MBNL1 overexpression. Overall, we did not find evidence for beneficial effects from overexpression of MBNL1 as a means to correct RNA toxicity mediated by mRNAs containing an expanded DMPK 3'UTR.


Asunto(s)
Músculo Esquelético/metabolismo , Distrofia Miotónica/genética , Proteínas de Unión al ARN/genética , Regiones no Traducidas 3' , Empalme Alternativo , Animales , Proteínas de Unión al ADN/genética , Proteínas de Unión al ADN/metabolismo , Modelos Animales de Enfermedad , Humanos , Ratones , Ratones Transgénicos , Músculo Esquelético/citología , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica/genética , Fenotipo , Empalme del ARN , ARN Mensajero/genética , Proteínas de Unión al ARN/metabolismo
5.
Int J Mol Sci ; 22(21)2021 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-34769305

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common muscular dystrophy affecting adults and children, is a multi-systemic disorder affecting skeletal, cardiac, and smooth muscles as well as neurologic, endocrine and other systems. This review is on the cardiac pathology associated with DM1. The heart is one of the primary organs affected in DM1. Cardiac conduction defects are seen in up to 75% of adult DM1 cases and sudden death due to cardiac arrhythmias is one of the most common causes of death in DM1. Unfortunately, the pathogenesis of cardiac manifestations in DM1 is ill defined. In this review, we provide an overview of the history of cardiac studies in DM1, clinical manifestations, and pathology of the heart in DM1. This is followed by a discussion of emerging data about the utility of cardiac magnetic resonance imaging (CMR) as a biomarker for cardiac disease in DM1, and ends with a discussion on models of cardiac RNA toxicity in DM1 and recent clinical guidelines for cardiologic management of individuals with DM1.


Asunto(s)
Músculos/patología , Distrofia Miotónica/etiología , Distrofia Miotónica/patología , Animales , Humanos , Distrofia Miotónica/clasificación
6.
Hum Mol Genet ; 24(1): 251-64, 2015 Jan 01.
Artículo en Inglés | MEDLINE | ID: mdl-25168381

RESUMEN

RNA toxicity is implicated in a number of disorders; especially those associated with expanded repeat sequences, such as myotonic dystrophy (DM1). Previously, we have shown increased NKX2-5 expression in RNA toxicity associated with DM1. Here, we investigate the relationship between NKX2-5 expression and muscle pathology due to RNA toxicity. In skeletal muscle from mice with RNA toxicity and individuals with DM1, expression of Nkx2-5 or NKX2-5 and its downstream targets are significantly correlated with severity of histopathology. Using C2C12 myoblasts, we show that over-expression of NKX2-5 or mutant DMPK 3'UTR results in myogenic differentiation defects, which can be rescued by knockdown of Nkx2-5, despite continued toxic RNA expression. Furthermore, in a mouse model of NKX2-5 over-expression, we find defects in muscle regeneration after induced damage, similar to those seen in mice with RNA toxicity. Using mouse models of Nkx2-5 over-expression and depletion, we find that NKX2-5 levels modify disease phenotypes in mice with RNA toxicity.


Asunto(s)
Proteínas de Homeodominio/genética , Músculo Esquelético/patología , Distrofias Musculares/genética , ARN/toxicidad , Factores de Transcripción/genética , Animales , Diferenciación Celular , Línea Celular , Modelos Animales de Enfermedad , Regulación de la Expresión Génica , Técnicas de Inactivación de Genes , Genes Modificadores , Proteína Homeótica Nkx-2.5 , Proteínas de Homeodominio/metabolismo , Humanos , Ratones , Ratones Transgénicos , Distrofias Musculares/metabolismo , Distrofias Musculares/patología , Proteína Quinasa de Distrofia Miotónica/genética , Factores de Transcripción/metabolismo
7.
Hum Mol Genet ; 24(7): 2035-48, 2015 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-25504044

RESUMEN

Myotonic dystrophy type 1 (DM1), the most prevalent muscular dystrophy in adults, is characterized by progressive muscle wasting and multi-systemic complications. DM1 is the prototype for disorders caused by RNA toxicity. Currently, no therapies exist. Here, we identify that fibroblast growth factor-inducible 14 (Fn14), a member of the tumor necrosis factor receptor super-family, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and in tissues from DM1 patients, and that its expression correlates with severity of muscle pathology. This is associated with downstream signaling through the NF-κB pathways. In mice with RNA toxicity, genetic deletion of Fn14 results in reduced muscle pathology and better function. Importantly, blocking TWEAK/Fn14 signaling with an anti-TWEAK antibody likewise improves muscle histopathology and functional outcomes in affected mice. These results reveal new avenues for therapeutic development and provide proof of concept for a novel therapeutic target for which clinically available therapy exists to potentially treat muscular dystrophy in DM1.


Asunto(s)
Distrofia Miotónica/metabolismo , Receptores del Factor de Necrosis Tumoral/metabolismo , Factores de Necrosis Tumoral/metabolismo , Adulto , Animales , Anticuerpos/administración & dosificación , Citocina TWEAK , Modelos Animales de Enfermedad , Femenino , Humanos , Masculino , Ratones , Ratones Noqueados , Persona de Mediana Edad , Distrofia Miotónica/tratamiento farmacológico , Distrofia Miotónica/genética , FN-kappa B/genética , FN-kappa B/metabolismo , Receptores del Factor de Necrosis Tumoral/antagonistas & inhibidores , Receptores del Factor de Necrosis Tumoral/genética , Transducción de Señal/efectos de los fármacos , Receptor de TWEAK , Inhibidores del Factor de Necrosis Tumoral , Factores de Necrosis Tumoral/genética
8.
Hum Mol Genet ; 23(2): 293-302, 2014 Jan 15.
Artículo en Inglés | MEDLINE | ID: mdl-24001600

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common form of adult-onset muscular dystrophy, is caused by an expanded (CTG)n repeat in the 3' untranslated region of the DM protein kinase (DMPK) gene. The toxic RNA transcripts produced from the mutant allele alter the function of RNA-binding proteins leading to the functional depletion of muscleblind-like (MBNL) proteins and an increase in steady state levels of CUG-BP1 (CUGBP-ETR-3 like factor 1, CELF1). The role of increased CELF1 in DM1 pathogenesis is well studied using genetically engineered mouse models. Also, as a potential therapeutic strategy, the benefits of increasing MBNL1 expression have recently been reported. However, the effect of reduction of CELF1 is not yet clear. In this study, we generated CELF1 knockout mice, which also carry an inducible toxic RNA transgene to test the effects of CELF1 reduction in RNA toxicity. We found that the absence of CELF1 did not correct splicing defects. It did however mitigate the increase in translational targets of CELF1 (MEF2A and C/EBPß). Notably, we found that loss of CELF1 prevented deterioration of muscle function by the toxic RNA, and resulted in better muscle histopathology. These data suggest that while reduction of CELF1 may be of limited benefit with respect to DM1-associated spliceopathy, it may be beneficial to the muscular dystrophy associated with RNA toxicity.


Asunto(s)
Factores de Transcripción MEF2/metabolismo , Músculo Esquelético/patología , Distrofia Miotónica/genética , ARN Mensajero/genética , Proteínas de Unión al ARN/genética , Empalme Alternativo , Animales , Proteína beta Potenciadora de Unión a CCAAT/genética , Proteína beta Potenciadora de Unión a CCAAT/metabolismo , Proteínas CELF1 , Modelos Animales de Enfermedad , Femenino , Humanos , Factores de Transcripción MEF2/genética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Persona de Mediana Edad , Distrofia Miotónica/patología , ARN Mensajero/metabolismo , Proteínas de Unión al ARN/metabolismo , Transgenes
9.
Nat Genet ; 38(9): 1066-70, 2006 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-16878132

RESUMEN

Myotonic dystrophy (DM1), the most common muscular dystrophy in adults, is caused by an expanded (CTG)n tract in the 3' UTR of the gene encoding myotonic dystrophy protein kinase (DMPK), which results in nuclear entrapment of the 'toxic' mutant RNA and interacting RNA-binding proteins (such as MBNL1) in ribonuclear inclusions. It is unclear if therapy aimed at eliminating the toxin would be beneficial. To address this, we generated transgenic mice expressing the DMPK 3' UTR as part of an inducible RNA transcript encoding green fluorescent protein (GFP). We were surprised to find that mice overexpressing a normal DMPK 3' UTR mRNA reproduced cardinal features of myotonic dystrophy, including myotonia, cardiac conduction abnormalities, histopathology and RNA splicing defects in the absence of detectable nuclear inclusions. However, we observed increased levels of CUG-binding protein (CUG-BP1) in skeletal muscle, as seen in individuals with DM1. Notably, these effects were reversible in both mature skeletal and cardiac muscles by silencing transgene expression. These results represent the first in vivo proof of principle for a therapeutic strategy for treatment of myotonic dystrophy by ablating or silencing expression of the toxic RNA molecules.


Asunto(s)
Miocardio/metabolismo , Miotonía/fisiopatología , Distrofia Miotónica/genética , Distrofia Miotónica/fisiopatología , ARN/toxicidad , Regiones no Traducidas 3' , Animales , Modelos Animales de Enfermedad , Electrocardiografía , Electromiografía , Silenciador del Gen , Proteínas Fluorescentes Verdes/metabolismo , Inmunohistoquímica , Hibridación Fluorescente in Situ , Ratones , Ratones Transgénicos , Músculo Esquelético/química , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiopatología , Miocardio/química , Distrofia Miotónica/etiología , Distrofia Miotónica/metabolismo , Proteína Quinasa de Distrofia Miotónica , Unión Proteica , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , ARN Mensajero/análisis , Transgenes , Expansión de Repetición de Trinucleótido
10.
Curr Protoc ; 3(2): e689, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36821783

RESUMEN

Förster Resonance Energy Transfer (FRET) is a great tool for cell biologists to investigate molecular interactions in live specimens. FRET is a distance-dependent phenomenon which can detect molecular interactions at distances between 1-10 nm. Several FRET approaches are reported in the literature for live and fixed cells to study protein-protein interactions; this protocol provides details of acceptor photobleaching as a FRET method to study RNA-Protein interactions. Cy3-labeled RNA foci (FRET acceptors) are photobleached at the intra-cellular site of interest (the nuclei) and the intensity of the EGFP-tagged proteins (FRET donors) at that same site are measured pre- and post- photobleaching. In principle, FRET is detected if the intensity of EGFP increases after photobleaching of Cy3. This protocol describes necessary steps and appropriate controls to conduct FRET measurements by the acceptor photobleaching method. Successful applications of this protocol will provide data to support the conclusion that EGFP-labeled proteins directly interact with Cy3-labeled RNA at the site of photobleaching. © 2023 The Authors. Current Protocols published by Wiley Periodicals LLC. Basic Protocol: FRET in fixed cells Alternate Protocol: FRET in live cells.


Asunto(s)
Transferencia Resonante de Energía de Fluorescencia , Transferencia Resonante de Energía de Fluorescencia/métodos , Fotoblanqueo , Fenómenos Biofísicos
11.
Curr Opin Neurol ; 25(5): 609-13, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22892953

RESUMEN

PURPOSE OF REVIEW: The myotonic dystrophies (DM1 and DM2) are the paradigm for RNA toxicity in disease pathogenesis. The emphasis of this review will be on recent developments and issues in understanding the pathogenesis of DM1 and how this is driving the accelerated pace of translational and therapeutic developments. RECENT FINDINGS: RNA toxicity in myotonic dystrophy is now associated with bi-directional antisense transcription, dysregulation of microRNAs and potentially non-ATG-mediated translation of homopolymeric toxic proteins. The role of other RNA-binding proteins beyond MBNL1 and CUGBP1, such as Staufen 1 and DDX5, are being identified and studied with respect to their role in myotonic dystrophy. New functions for MBNL1 in miR-1 biogenesis might have a clinically relevant role in myotonic dystrophy cardiac conduction defects and pathology. Advances are being made in identifying and characterizing small molecules with the potential to disrupt CUG-MBNL1 interactions. SUMMARY: Mechanisms of RNA toxicity are moving beyond a simplistic 'foci-centric' view of DM1 pathogenesis as a spliceopathy due to MBNL1 sequestration. Therapeutic development for myotonic dystrophy is moving rapidly with the development of antisense and small molecule therapies. Clinically, significant emphasis is being placed on biomarker discovery and outcome measures as an essential prelude to clinical trials.


Asunto(s)
Distrofia Miotónica/genética , Animales , Desfibriladores Implantables , Humanos , Ratones , Mutación/genética , Mutación/fisiología , Distrofia Miotónica/patología , Distrofia Miotónica/terapia , ARN/genética , ARN sin Sentido/genética , Proteínas de Unión al ARN/genética
12.
Muscle Nerve ; 44(2): 160-9, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21607985

RESUMEN

Myotonic dystrophy (DM1), the most common adult muscular dystrophy, is a multisystem, autosomal dominant genetic disorder caused by an expanded CTG repeat that leads to nuclear retention of a mutant RNA and subsequent RNA toxicity. Significant insights into the molecular mechanisms of RNA toxicity have led to the previously unforeseen possibility that treating DM1 is a viable prospect. In this review, we briefly present the clinical picture in DM1, and describe how the research in understanding the pathogenesis of RNA toxicity in DM1 has led to targeted approaches to therapeutic development at various steps in the pathogenesis of the disease. We discuss the promise and current limitations of each with an emphasis on RNA-based therapeutics and small molecules. We conclude with a discussion of the unmet need for clinical tools and outcome measures that are essential prerequisites to proceed in evaluating these potential therapies in clinical trials.


Asunto(s)
Terapia Genética , Distrofia Miotónica/terapia , ARN , Humanos , Distrofia Miotónica/genética , Distrofia Miotónica/patología , Oligonucleótidos Antisentido/uso terapéutico
13.
Am J Clin Pathol ; 153(5): 598-604, 2020 04 15.
Artículo en Inglés | MEDLINE | ID: mdl-31844887

RESUMEN

OBJECTIVES: Although germline mutations of mismatch repair (MMR) genes (Lynch syndrome) are not typically associated with cholangiocarcinomas, the US Food and Drug Administration recently approved the use of pembrolizumab in patients with advanced solid tumors at all sites that show MMR deficiency or associated high microsatellite instability. METHODS: We analyzed 96 cases of intra- and extrahepatic cholangiocarcinomas for morphology using H&E and for MMR status using immunohistochemical staining. We submitted any results with MMR loss for microsatellite instability testing. RESULTS: We found that 6% of samples showed MMR deficiency. The best predictive factor was a nontypical infiltrating pattern of invasion (P < .0001). No patients with MMR deficiency had a history of a cancer typically associated with Lynch syndrome. CONCLUSIONS: Solid, mucinous, or signet-ring appearance of a cholangiocarcinoma should prompt MMR testing for immunotherapy options but should not necessarily raise concern about Lynch syndrome.


Asunto(s)
Neoplasias de los Conductos Biliares/genética , Neoplasias Encefálicas/genética , Colangiocarcinoma/genética , Neoplasias Colorrectales/genética , Inestabilidad de Microsatélites , Síndromes Neoplásicos Hereditarios/genética , Anciano , Neoplasias de los Conductos Biliares/metabolismo , Neoplasias de los Conductos Biliares/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Colangiocarcinoma/metabolismo , Colangiocarcinoma/patología , Neoplasias Colorrectales/metabolismo , Neoplasias Colorrectales/patología , Reparación de la Incompatibilidad de ADN , Femenino , Humanos , Masculino , Persona de Mediana Edad , Síndromes Neoplásicos Hereditarios/metabolismo , Síndromes Neoplásicos Hereditarios/patología
14.
J Cell Biol ; 159(3): 419-29, 2002 Nov 11.
Artículo en Inglés | MEDLINE | ID: mdl-12427866

RESUMEN

Myotonic dystrophy (DM) is caused by two similar noncoding repeat expansion mutations (DM1 and DM2). It is thought that both mutations produce pathogenic RNA molecules that accumulate in nuclear foci. The DM1 mutation is a CTG expansion in the 3' untranslated region (3'-UTR) of dystrophia myotonica protein kinase (DMPK). In a cell culture model, mutant transcripts containing a (CUG)200 DMPK 3'-UTR disrupt C2C12 myoblast differentiation; a phenotype similar to what is observed in myoblast cultures derived from DM1 patient muscle. Here, we have used our cell culture model to investigate how the mutant 3'-UTR RNA disrupts differentiation. We show that MyoD protein levels are compromised in cells that express mutant DMPK 3'-UTR transcripts. MyoD, a transcription factor required for the differentiation of myoblasts during muscle regeneration, activates differentiation-specific genes by binding E-boxes. MyoD levels are significantly reduced in myoblasts expressing the mutant 3'-UTR RNA within the first 6 h under differentiation conditions. This reduction correlates with blunted E-box-mediated gene expression at time points that are critical for initiating differentiation. Importantly, restoring MyoD levels rescues the differentiation defect. We conclude that mutant DMPK 3'-UTR transcripts disrupt myoblast differentiation by reducing MyoD levels below a threshold required to activate the differentiation program.


Asunto(s)
Regiones no Traducidas 3'/genética , Diferenciación Celular/fisiología , Proteínas de Unión al ADN , Proteína MioD/metabolismo , Mioblastos/fisiología , Distrofia Miotónica/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Transactivadores , Animales , Células Cultivadas , Regulación del Desarrollo de la Expresión Génica , Genes Reporteros , Humanos , Hibridación Fluorescente in Situ , Ratones , Modelos Biológicos , Proteínas Musculares/metabolismo , Mutación , Proteína MioD/genética , Mioblastos/citología , Factor 5 Regulador Miogénico , Miogenina/metabolismo , Distrofia Miotónica/genética , Proteína Quinasa de Distrofia Miotónica , Regiones Promotoras Genéticas , Proteínas Serina-Treonina Quinasas/metabolismo , ARN/genética , ARN/metabolismo , Proteínas Recombinantes de Fusión/genética , Proteínas Recombinantes de Fusión/metabolismo , Factores de Transcripción/metabolismo
15.
Am J Surg Pathol ; 43(10): 1361-1367, 2019 10.
Artículo en Inglés | MEDLINE | ID: mdl-31261290

RESUMEN

Helicobacter infection is considered the major predisposing factor for gastric mucosa-associated lymphoid tissue (MALT) lymphoma with initial infection likely occurring in childhood. Primary gastric MALT lymphoma most commonly occurs in patients older than 50 years which is attributed to the lengthy chronic infection time required before the development of MALT lymphoma. Our study analyzes the histologic features and presence of immunoglobulin heavy chain (IGH) clonality in Helicobacter-associated chronic gastritis (62 cases) and Helicobacter-negative chronic gastritis (17 cases) biopsies within the pediatric population, diagnosed between 1996 and 2018. Helicobacter-associated gastritis was more likely to show active inflammation (P=0.01), with no significant difference in number of germinal centers or the strength, linear property, or depth of the inflammatory infiltrate. In total, 47% (29/62) of the Helicobacter-associated cases had at least 1 lymphoepithelial lesion, equivocal or definitive (a modified Wotherspoon score of 3 to 5), compared with 24% (4/17) of the Helicobacter-negative cases (P=0.5). All cases with lymphoepithelial lesions were assessed for IGH clonality, showing the presence of monoclonality in 27% (8/30) of evaluable cases. None of our patients were diagnosed with gastric lymphoma within available follow-up data. Although 4% of our cases could be considered MALT lymphoma in an adult patient based on prominent lymphoepithelial lesions and IGH monoclonality, caution is advised when diagnosing lymphoma in the pediatric population given the good prognosis of Helicobacter-associated gastritis in this age group. It is unclear if these monoclonal lymphoid proliferations require close follow-up.


Asunto(s)
Proliferación Celular , Mucosa Gástrica/microbiología , Gastritis/microbiología , Genes de las Cadenas Pesadas de las Inmunoglobulinas , Centro Germinal/microbiología , Infecciones por Helicobacter/microbiología , Helicobacter pylori/patogenicidad , Linfoma de Células B de la Zona Marginal/microbiología , Neoplasias Gástricas/microbiología , Adolescente , Estudios de Casos y Controles , Niño , Enfermedad Crónica , Femenino , Mucosa Gástrica/inmunología , Mucosa Gástrica/patología , Gastritis/inmunología , Gastritis/patología , Centro Germinal/inmunología , Centro Germinal/patología , Infecciones por Helicobacter/inmunología , Infecciones por Helicobacter/patología , Interacciones Huésped-Patógeno , Humanos , Linfoma de Células B de la Zona Marginal/inmunología , Linfoma de Células B de la Zona Marginal/patología , Masculino , Neoplasias Gástricas/inmunología , Neoplasias Gástricas/patología
16.
Biochem Biophys Res Commun ; 377(2): 526-531, 2008 Dec 12.
Artículo en Inglés | MEDLINE | ID: mdl-18930030

RESUMEN

In myotonic dystrophy type I (DM1), nuclear retention of mutant DMPK transcripts compromises muscle cell differentiation. Although several reports have identified molecular defects in myogenesis, it remains still unclear how exactly the retention of the mutant transcripts induces this defect. We have recently created a novel cellular model in which the mutant DMPK 3' UTR transcripts were released to the cytoplasm of myoblasts by using the WPRE genetic element. As a result, muscle cell differentiation was repaired. In this paper, this cellular model was further exploited to investigate the effect of the levels and location of the mutant transcripts on muscle differentiation. Results show that the levels of these transcripts were proportional to the inhibition of both the initial fusion of myoblasts and the maturity of myotubes. Moreover, the cytoplasmic export of the mutant RNAs to the cytoplasm caused less inhibition only in the initial fusion of myoblasts.


Asunto(s)
Regiones no Traducidas 3'/metabolismo , Núcleo Celular/enzimología , Modelos Biológicos , Desarrollo de Músculos/genética , Distrofia Miotónica/genética , Transcripción Genética , Animales , Diferenciación Celular , Línea Celular , Citoplasma/enzimología , Ratones , Mioblastos/citología , Mioblastos/enzimología , Proteína Quinasa de Distrofia Miotónica , Proteínas Serina-Treonina Quinasas/genética , Elementos Reguladores de la Transcripción
17.
Mol Genet Genomic Med ; 6(3): 457-462, 2018 05.
Artículo en Inglés | MEDLINE | ID: mdl-29577677

RESUMEN

BACKGROUND: Mutations in the parkin gene (PRKN) are the most commonly identified genetic factors in early onset Parkinson disease (EOPD), with biallelic mutations, resulting in a clinical phenotype. However, normal variation is also common in PRKN, particularly in the form of copy number variation (CNV), challenging interpretation of genetic testing results. Here we report a case of a 29-year-old male with EOPD and two deletions in PRKN detected by chromosomal microarray (CMA). METHODS: The proband was clinically examined by a neurologist for postural instability with frequent falls, bradykinesia, gait freezing with festination, and hypophonia. Chromosomal microarray analysis (CMA) was performed on the proband and his parents using the Affymetrix CytoScan HD microarray. Subsequent fluorescence in situ hybridization (FISH) was performed on the proband and both parents. RESULTS: Chromosomal microarray detected the presence of two deletions of PRKN in the proband. Parental CMA analysis was performed to determine the clinical significance of this finding, as well as to demonstrate phase of these deletions. Parental CMA revealed that one deletion was paternally inherited and one deletion was de novo. A custom FISH approach was then successfully used to phase the deletions. CONCLUSION: Chromosomal microarray and fluorescence in situ hybridization analysis of this trio identified two deletions in PRKN occurring in trans, providing a genetic etiology for the clinical diagnosis of EOPD. The determination of inheritance and phase of the deletions was critical to the proper interpretation of these results. These findings highlight the utility of CMA in the detection of clinically relevant CNVs in cases of EOPD, and also serve to emphasize the importance of follow-up FISH and parental testing.


Asunto(s)
Trastornos Parkinsonianos/genética , Ubiquitina-Proteína Ligasas/genética , Adulto , Variaciones en el Número de Copia de ADN/genética , Eliminación de Gen , Humanos , Hibridación Fluorescente in Situ/métodos , Masculino , Análisis por Micromatrices , Mutación , Enfermedad de Parkinson/genética , Fenotipo , Eliminación de Secuencia , Ubiquitina-Proteína Ligasas/metabolismo
18.
Am J Surg Pathol ; 42(11): 1549-1555, 2018 11.
Artículo en Inglés | MEDLINE | ID: mdl-30148743

RESUMEN

Lynch syndrome (LS) is defined by germline mutations in DNA mismatch repair (MMR) genes, and affected patients are at high risk for multiple cancers. Reflexive testing for MMR protein loss by immunohistochemistry (IHC) is currently only recommended for colorectal and endometrial cancers, although upper tract urothelial carcinoma (UTUC) is the third-most common malignancy in patients with LS. To study the suitability of universal MMR IHC screening for UTUC, we investigated MMR expression and microsatellite status in UTUC in comparison to bladder UC (BUC), and evaluated the clinicopathologic features of UTUC. We found that 9% of UTUC showed MMR IHC loss (8 MSH6 alone; 1 MSH2 and MSH6; 1 MLH1 and PMS2; n=117) compared with 1% of BUC (1 MSH6 alone; n=160) (P=0.001). Of these, 4/10 (40%) of UTUC (3% overall; 3 MSH6 alone; 1 MLH1 and PMS2) and none (0%) of BUC had high microsatellite instability on molecular testing (P=0.03). The only predictive clinicopathologic feature for MMR loss was a personal history of colorectal cancer (P=0.0003). However, UTUC presents at a similar age to colon carcinoma in LS and thus UTUC may be the sentinel event in some patients. Combining our results with those of other studies suggests that 1% to 3% of all UTUC cases may represent LS-associated carcinoma. LS accounts for 2% to 6% of both colorectal and endometrial cancers. As LS likely accounts for a similar percentage of UTUC, we suggest that reflexive MMR IHC screening followed by microsatellite instability testing be included in diagnostic guidelines for all UTUC.


Asunto(s)
Biomarcadores de Tumor/genética , Neoplasias Colorrectales Hereditarias sin Poliposis/genética , Reparación de la Incompatibilidad de ADN , Enzimas Reparadoras del ADN/genética , Detección Precoz del Cáncer/métodos , Inmunohistoquímica , Inestabilidad de Microsatélites , Neoplasias Urológicas/genética , Urotelio/química , Adulto , Anciano , Anciano de 80 o más Años , Neoplasias Colorrectales Hereditarias sin Poliposis/patología , Análisis Mutacional de ADN , Proteínas de Unión al ADN/genética , Bases de Datos Factuales , Femenino , Predisposición Genética a la Enfermedad , Humanos , Masculino , Persona de Mediana Edad , Endonucleasa PMS2 de Reparación del Emparejamiento Incorrecto/genética , Homólogo 1 de la Proteína MutL/genética , Proteína 2 Homóloga a MutS/genética , Mutación , Fenotipo , Valor Predictivo de las Pruebas , Reproducibilidad de los Resultados , Neoplasias Urológicas/patología , Urotelio/patología
19.
PLoS One ; 11(9): e0163325, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27657532

RESUMEN

Myotonic dystrophy type 1(DM1) is the prototype for diseases caused by RNA toxicity. RNAs from the mutant allele contain an expanded (CUG)n tract within the 3' untranslated region of the dystrophia myotonica protein kinase (DMPK) gene. The toxic RNAs affect the function of RNA binding proteins leading to sequestration of muscleblind-like (MBNL) proteins and increased levels of CELF1 (CUGBP, Elav-like family member 1). The mechanism for increased CELF1 is not very clear. One favored proposition is hyper-phosphorylation of CELF1 by Protein Kinase C alpha (PKCα) leading to increased CELF1 stability. However, most of the evidence supporting a role for PKC-α relies on pharmacological inhibition of PKC. To further investigate the role of PKCs in the pathogenesis of RNA toxicity, we generated transgenic mice with RNA toxicity that lacked both the PKCα and PKCß isoforms. We find that these mice show similar disease progression as mice wildtype for the PKC isoforms. Additionally, the expression of CELF1 is also not affected by deficiency of PKCα and PKCß in these RNA toxicity mice. These data suggest that disease phenotypes of these RNA toxicity mice are independent of PKCα and PKCß.

20.
PLoS One ; 11(2): e0150192, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-26901467

RESUMEN

Myotonic dystrophy type 1 (DM1), the most common form of muscular dystrophy in adults, is caused by toxic RNAs produced from the mutant DM protein kinase (DMPK) gene. DM1 is characterized by progressive muscle wasting and weakness. Therapeutic strategies have mainly focused on targeting the toxic RNA. Previously, we found that fibroblast growth factor-inducible 14 (Fn14), the receptor for TWEAK, is induced in skeletal muscles and hearts of mouse models of RNA toxicity and that blocking TWEAK/Fn14 signaling improves muscle function and histology. Here, we studied the effect of Tweak deficiency in a RNA toxicity mouse model. The genetic deletion of Tweak in these mice significantly reduced muscle damage and improved muscle function. In contrast, administration of TWEAK in the RNA toxicity mice impaired functional outcomes and worsened muscle histopathology. These studies show that signaling via TWEAK is deleterious to muscle in RNA toxicity and support the demonstrated utility of anti-TWEAK therapeutics.


Asunto(s)
Músculo Esquelético/metabolismo , Músculo Esquelético/fisiología , Factores de Necrosis Tumoral/metabolismo , Animales , Citocina TWEAK , Modelos Animales de Enfermedad , Ratones , Ratones Noqueados , Distrofia Miotónica/genética , Distrofia Miotónica/metabolismo , Transducción de Señal , Factores de Necrosis Tumoral/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA