RESUMEN
Considering the potential advantages of minimally sized corroles for diverse applications, this study reports a facile access to cyano-substituted derivatives via a rare CF3/CN conversion. Investigation of the fully characterized gallium, phosphorus, and cobalt complexes discloses multiple effects of the meso-nitrile groups attached to the macrocycle. This corrole appears to be the most electron poor derivative which comes into play in the redox potentials of the corresponding complexes. Compared to its precursor, both the absorption and emission are strongly red shifted and the fluorescence lifetime and quantum yield are much larger. The coordination chemistry is affected as well, by virtue of axial ligands being perpendicular rather than parallel relative to each other.
RESUMEN
Boron subphthalocyanines with chloride and fluoride axial ligands and three antimony complexes chelated by corroles that differ in size and electron-richness were examined as electrocatalysts for reduction of protons to hydrogen. Experiment- and computation-based investigations revealed that all redox events are ligand-centered and that the meso-C of the corroles and the peripheral N atoms of the subphthalocyanines are the largely preferred proton-binding sites.
RESUMEN
Corroles are synthetic porphyrin analogs that contain one meso carbon atom lesser and bear a trianionic N4 metal-chelating core. They require in-depth preparative chemistry, demonstrate unique coordination chemistry and have impressive and diverse physical properties, and these are commonly compared to their respective porphyrins. The corrole's macrocyclic system is inherently electron rich and chelates metal ions in a more compact, less symmetric tetranitrogen cavity compared to that of porphyrins. Herein, we cover the highlights of the corrole research through the decades by first reviewing, in a chronological sense, multi-step syntheses; some routes have since been discontinued. This is followed by describing post-functionalization of already formed corroles via reactions performed on either the macrocycle's periphery or the inner nitrogen atoms or on the existing substituents. We do also mention milestones in literature reviewing, publication of encyclopedias, and the creation of professional organizations and conferences (ICPP) which make up the corrole/porphyrin research landscape. Also highlighted are still existing challenges and future perspectives.
RESUMEN
The renaissance in corrole chemistry is strongly correlated with synthetic breakthroughs that started in 1999, regarding the one-pot rather than multistep syntheses of this heme-like N4 macrocycle. This largely improved synthetic accessibility allowed for technological advances wherein the corresponding metal complexes have since been introduced as key elements. Great emphasis was devoted to the elucidation of the unique fundamental features that distinguish corrole ligands, among them outstanding electron donation (σ by the N atoms and π by the macrocycle) to transition metals chelated by them. Such investigations remain crucial for enabling the by-demand tuning of metallocorrole properties for distinctly different applications. These range from the catalysis of organic reactions, through bioimaging and disease prevention/treatment strategies, to photo- and electrocatalysis for clean energy. Surveyed are the original reports that impacted these developments, together with some of the most recent advances.
RESUMEN
Conjugated arrays composed of corrole macrocycles are increasingly more common, but their chemistry still lags behind that of their porphyrin counterparts. Here, we report on the insertion of iron(III) into a ß,ß-fused corrole dimer and on the electronic effects that this redox active metal center has on the already rich coordination chemistry of [H3tpfc] COT, where COT = cyclo-octatetraene and tpfc = tris(pentafluorophenyl)corrole. Synthetic manipulations were performed for the isolation and full characterization of both the 5-coordinate [FeIIItpfc(py)]2COT and 6-coordinate [FeIIItpfc(py)2]2COT, with one and two axial pyridine ligands per metal, respectively. X-Ray crystallography reveals a dome-shaped structure for [FeIIItpfc(py)]2COT and a perfectly planar geometry which (surprisingly at first) is also characterized by shorter Fe-N (corrole) and Fe-N (pyridine) distances. Computational investigations clarify that the structural phenomena are due to a change in the iron(III) spin state from intermediate (S = 3/2) to low (S = 1/2), and that both the 5- and 6-coordinated complexes are enthalpically favored. Yet, in contrast to iron(III) porphyrins, the formation enthalpy for the coordination of the first pyridine to Fe(III) corrole is more negative than that of the second pyridine coordination. Possible interactions between the two corrole subunits and the chelated iron ions were examined by UV-Vis spectroscopy, electrochemical techniques, and density functional theory (DFT). The large differences in the electronic spectra of the dimer relative to the monomer are concluded to be due to a reduced electronic gap, owing to the extensive electron delocalization through the fusing bridge. A cathodic sweep for the dimer discloses two redox processes, separated by 230 mV. The DFT self-consistent charge density for the neutral and cationic states (1- and 2-electron oxidized) reveals that the holes are localized on the macrocycle. A different picture emerges from the reduction process, where both the electrochemistry and the calculated charge density point toward two consecutive electron transfers with similar energetics, indicative of very weak electron communication between the two redox active iron(III) sites. The binuclear complex was determined to be a much better catalyst for the electrochemical hydrogen evolution reaction (HER) than the analogous mononuclear corrole.
RESUMEN
Chlorophyll special pairs in photosynthetic reaction centers function as both exciton acceptors and primary electron donors. Although the macrocyclic natural pigments contain Mg(II), the central metal in most synthetic analogs is Zn(II). Here we report that insertion of either Al(III) or Ga(III) into an imidazole-substituted corrole affords an exceptionally robust photoactive dimer. Notably, attractive electronic interactions between dimer subunits are relatively strong, as documented by signature changes in NMR and electronic absorption spectra, as well as by cyclic voltammetry, where two well-separated reversible redox couples were observed. EPR spectra of one-electron oxidized dimers closely mimic those of native special pairs, and strong through-space interactions between corrole subunits inferred from spectroscopic and electrochemical data are further supported by crystal structure analyses (3 Å interplanar distances, 5 Å lateral shifts, and 6 Å metal to metal distances).
Asunto(s)
Materiales Biomiméticos/química , Imidazoles/química , Metaloporfirinas/química , Aluminio/química , Materiales Biomiméticos/síntesis química , Materiales Biomiméticos/efectos de la radiación , Clorofila/química , Electrones , Galio/química , Imidazoles/síntesis química , Imidazoles/efectos de la radiación , Luz , Metaloporfirinas/síntesis química , Metaloporfirinas/efectos de la radiación , Estructura Molecular , Oxidación-ReducciónRESUMEN
A set of gold corrole complexes containing four different ß-substituent groups (Br/I/CF3), namely, 4Br-Au, 4I-Au, and 4CF3-Au, were investigated; all showed room temperature phosphorescence. The phosphorescence quantum yields of the corroles were determined using tetraphenylporphyrin as a reference: Φph (4I-Au, 0.75%) > Φph (4Br-Au, 0.64%) > Φph (4CF3-Au, 0.38%). 4CF3-Au exhibited near-IR emission (858 nm, aerobic); absorbance intensity for the Q-band was higher than that for the Soret band. Complex 4I-Au showed a longer phosphorescence lifetime (82 µs) compared to those of 4Br-Au (53 µs) and 4CF3-Au (28 µs; N2, tol). Thermally activated delayed fluorescence (TADF) emission of 4I/Br-Au complexes was observed: stronger emission intensity correlated with increasing temperature. Good negative correlations for 4I/Br-Au were observed between the Soret band absorption energy and the solvent polarizability: excited states of 4I/Br-Au are more polar than their ground states. TD-DFT calculations revealed very fast intersystem crossing (ISC) rate constants, 2.20 × 1012 s-1 (4CF3-Au) > 1.96 × 1011 s-1 (4Br-Au) > 1.15 × 1011 s-1 (4I-Au), and importantly, the reverse intersystem crossing (rISC) rate constants are determined as 1.68 × 107 s-1 (4I-Au) > 2.40 × 103 s-1 (4Br-Au) â« 8.09 × 10-8 s-1 (4CF3-Au). The exceptionally low rISC rate constant of 4CF3-Au is attributed to its more steric and deformed structure bearing a larger energy gap between the S1 and T1 states.
RESUMEN
Heme-like metal-chelating macrocycles, including expanded and contracted porphyrins, are of everlasting interest as drug candidates for numerous diseases. Still, all reported corrole derivatives (and most other heme analogues) do not fulfill the most basic standards expected for oral drug administration: a combination of low molecular weight and reasonable water solubility. We now disclose a very straightforward synthetic method that relies on surprisingly facile trifluoromethyl hydrolysis for gaining access to a new class of corroles that do satisfy all druglikeness criteria. The relevance is briefly exemplified for the iron corroles by demonstrating the ability to affect their association with plasma proteins and their performance for catalase-like decomposition of hydrogen peroxide.
Asunto(s)
Complejos de Coordinación/química , Hidrocarburos Fluorados/química , Hidrólisis , Estructura MolecularRESUMEN
Corroles, macrocycles that owe their name to the cobalt-chelating prosthetic group of vitamin B12 and share numerous features with the iron-chelating porphyrin present in heme proteins/enzymes, constantly cross new boundaries ever since stable derivatives became easily accessible. Particularly important is the increasing utilization of corroles and the corresponding metal complexes for the benefit of mankind, in terms of new drug candidates for treating various diseases and as catalysts for sustainable energy relevant processes. One challenge is to gain access to the plain macrocycle, as to allow for full elucidation of the most fundamental properties of corroles. We have obtained the substituent-free corrole by several surprising and conceptually different pathways. Selected features of the corresponding metal complexes are illuminated, for pointing towards unique phenomena that are anticipated to largely expand the horizon regarding their utilization for contemporary catalysis.
RESUMEN
Considering the importance of water splitting as the best solution for clean and renewable energy, the worldwide efforts for development of increasingly active molecular water oxidation catalysts must be accompanied by studies that focus on elucidating the mode of actions and catalytic pathways. One crucial challenge remains the elucidation of the factors that determine the selectivity of water oxidation by the desired 4e-/4H+ pathway that leads to O2 rather than by 2e-/2H+ to H2O2. We now show that water oxidation with the cobalt-corrole CoBr8 as electrocatalyst affords H2O2 as the main product in homogeneous solutions, while heterogeneous water oxidation by the same catalyst leads exclusively to oxygen. Experimental and computation-based investigations of the species formed during the process uncover the formation of a Co(III)-superoxide intermediate and its preceding high-valent Co-oxyl complex. The competition between the base-catalyzed hydrolysis of Co(III)-hydroperoxide [Co(III)-OOH]- to release H2O2 and the electrochemical oxidation of the same to release O2 via [Co(III)-O2â¢]- is identified as the key step determining the selectivity of water oxidation.
RESUMEN
An eight-member series of CF3-substituted difluorophosphorus corroles was prepared for establishing a structure-activity profile of these high-potential photosensitizers. It consisted of preparing all four possible isomers of the monosubstituted corrole and complexes with 2-, 3-, 4-, and 5-CF3 groups on the macrocycle's periphery. The synthetic pathway to these CF3-substituted derivatives, beginning with (tpfc)PF2, involves two different initial routes: (i) direct electrophilic CF3 incorporation using FSO2CF2CO2Me and copper iodide, or (ii) bromination to achieve the 2,3,8,17,18-pentabrominated compound using excess bromine in methanol. Crystallographic investigations revealed that distortion of the original planar macrocycle is evident even in the monosubstituted case and that it becomes truly severe for the penta-CF3-substituted derivative 5. There is a shift in redox potentials of about 193 mV per -CF3 group, which decreases to only 120 mV for the fifth one in 5. Differences in the electronic spectra suggest that the Gouterman four orbital model decreases in relevance upon gradual -CF3 substitution, a conclusion that was corroborated by DFT calculations. The very significant energy lowering of the frontier orbitals suggested that photoexcitation should lead to a highly oxidizing photocatalyst. This hypothesis was proven true by finding that the most synthetically accessible CF3-substituted derivative is an excellent catalyst for the photoinduced conversion of bromide to bromine (phenol, toluene, and benzene assay).
RESUMEN
A detailed investigation of the cobalt corrole Co(tpfc) as molecular catalyst for electrochemical water oxidation uncovered many important mechanism-of-action details that are crucial for the design of optimally performing systems. This includes the identification of the redox states that do and do not participate in catalysis and very significant axial ligand effects on the activity of the doubly oxidized complex. Specifics deduced for the electrocatalysis under homogeneous conditions include the following: the one-electron oxidation of the cobalt(III) corrole is completely unaffected by reaction conditions; catalysis coincides with the second oxidation event; two catalytic waves develop in the presence of OH-, and the one at lower overpotential is dominant under more basic conditions. Comparative spectroelectrochemical measurements performed for Co(tpfc) and Al(tpfc), the analogous corrole chelated by the nonredox active aluminum, revealed that the second oxidation process of Co(tpfc) is much more significantly metal-centered than the first one. EPR studies revealed that shift from fully corrole-centered to partially metal-centered in the singly oxidized complex [Co(tpfc)]+ is achievable with fluoride as axial ligand. The analogous experiment, but with hydroxide instead of fluoride, could not be performed because of a surprising phenomenon: formation of a cobalt-superoxide complex that is actually relevant to oxygen reduction rather than to water oxidation. Nevertheless, fluoride and hydroxide induce very similar effects in terms of the appearance of two catalytic waves, lowering of onset potentials, and increasing the catalytic activity. The main conclusions from the accumulated data are that the apparent pH effect is actually due to hydroxide binding to the cobalt center and that π-donating axial ligands play pivotal and beneficial roles regarding the main factors that are important for facilitating the oxidation of water.
RESUMEN
Understanding the correlation between structural features of small-molecule drugs and their mode of action is a fascinating topic and crucial for the drug-discovery process. However, in many cases, knowledge of the exact parameters that dictate the mode of action is still lacking. Following a large screening for ubiquitin specific proteaseâ 2 (USP2) inhibition, an effective para-quinone-based inhibitor with an unclear mode of action was identified. To gain a deeper understanding of the mechanism of inhibition, a set of para-quinones were prepared and studied for USP2 inhibition, electrocatalysis, and reactive oxygen species (ROS) quantification. The excellent correlation obtained from the above-mentioned studies disclosed a distinct pattern of "N-C=O-N" in the bicyclic para-quinones to be a crucial factor for ROS generation, and demonstrated that minor changes in such a skeleton drastically altered the ROS-generating ability. The knowledge acquired herein would serve as an important guideline for future medicinal chemistry optimization of related structures to select the preferred mode of action.
Asunto(s)
Quinonas/química , Especies Reactivas de Oxígeno/análisis , Proteasas Ubiquitina-Específicas/metabolismo , Catálisis , Línea Celular Tumoral , Diseño de Fármacos , Técnicas Electroquímicas , Humanos , Mediciones Luminiscentes , Especies Reactivas de Oxígeno/metabolismo , Relación Estructura-Actividad , Proteasas Ubiquitina-Específicas/antagonistas & inhibidoresRESUMEN
Corroles are a developing class of tetrapyrrole-based molecules with significant chemical potential and relatively unexplored photophysical properties. We combined femtosecond broadband fluorescence up-conversion and fs broadband Vis-pump Vis-probe spectroscopy to comprehensively characterize the photoreaction of 5,10,15-tris-pentafluorophenyl-corrolato-antimony(V)-trans-difluoride (Sb-tpfc-F2). Upon fs Soret band excitation at ~400 nm, the energy relaxed almost completely to Q band electronic excited states with a time constant of 500 ± 100 fs; this is evident from the decay of Soret band fluorescence at around 430 nm and the rise time of Q band fluorescence, as well as from Q band stimulated emission signals at 600 and 650 nm with the same time constant. Relaxation processes on a time scale of 10 and 20 ps were observed in the fluorescence and absorption signals. Triplet formation showed a time constant of 400 ps, with an intersystem crossing yield from the Q band to the triplet manifold of between 95% and 99%. This efficient triplet formation is due to the spin-orbit coupling of the antimony ion.
Asunto(s)
Antimonio/química , Porfirinas/química , Tetrapirroles/química , Fluorescencia , Luz , Teoría CuánticaRESUMEN
Recent studies show the feasibility of photodynamic inactivation of green algae as a vital step towards an effective photodynamic suppression of biofilms by using functionalized surfaces. The investigation of the intrinsic mechanisms of photodynamic inactivation in green algae represents the next step in order to determine optimization parameters. The observation of singlet oxygen luminescence kinetics proved to be a very effective approach towards understanding mechanisms on a cellular level. In this study, the first two-dimensional measurement of singlet oxygen kinetics in phototrophic microorganisms on surfaces during photodynamic inactivation is presented. We established a system of reproducible algae samples on surfaces, incubated with two different cationic, antimicrobial potent photosensitizers. Fluorescence microscopy images indicate that one photosensitizer localizes inside the green algae while the other accumulates along the outer algae cell wall. A newly developed setup allows for the measurement of singlet oxygen luminescence on the green algae sample surfaces over several days. The kinetics of the singlet oxygen luminescence of both photosensitizers show different developments and a distinct change over time, corresponding with the differences in their localization as well as their photosensitization potential. While the complexity of the signal reveals a challenge for the future, this study incontrovertibly marks a crucial, inevitable step in the investigation of photodynamic inactivation of biofilms: it shows the feasibility of using the singlet oxygen luminescence kinetics to investigate photodynamic effects on surfaces and thus opens a field for numerous investigations.
Asunto(s)
Biopelículas/crecimiento & desarrollo , Chlorophyta/crecimiento & desarrollo , Fármacos Fotosensibilizantes/química , Oxígeno Singlete/química , Biopelículas/efectos de la radiación , Chlorophyta/efectos de la radiación , Cinética , Luz , Luminiscencia , Microscopía Fluorescente , Propiedades de Superficie/efectos de la radiaciónRESUMEN
Photochemical oxidation of halide anions by visible light has been suggested for solar energy conversion processes. Post-transition metallocorroles are now disclosed as very efficient catalysts for the photoinduced transformation of bromide to bromine. The advantages of these catalysts are that they are very stable under the reaction conditions and that the energy levels of the oxidizing HOMO and the reducing LUMO are easily tuned. Insights into the mechanism of action obtained in this work is predicted to be very useful for the design of other systems that rely on photocatalysis for driving endergonic reactions.
RESUMEN
The future of affordable fuel cells strongly relies on the design of earth-abundant (non-platinum) catalysts for the electrochemical oxygen reduction reaction (ORR). However, the bottleneck in the overall process occurs therein. We have examined herein trivalent Mn, Fe, Co, Ni, and Cu complexes of ß-pyrrole-brominated corrole as ORR catalysts. The adsorption of these complexes on a high-surface-area carbon powder (BP2000) created a unique composite material, used for electrochemical measurements in acidic aqueous solutions. These experiments disclosed a clear dependence of the catalytic activity on the metal center of the complexes, in the order of Co>Fe>Ni>Mn>Cu. The best catalytic performance was obtained for the Co(III) corrole, whose onset potential was as positive as 0.81 V versus the reversible hydrogen electrode (RHE). Insight into the properties of these systems was gained by spectroscopic and computational characterization of the reduced and oxidized forms of the metallocorroles.
RESUMEN
The synthesis and characterization of manganese complexes of 5,10,15-tris(4-nitrophenyl) corrole in different oxidation states are described. Adoption of established protocols for the synthesis of (nitrido)manganese(V) complexes led to the expected corrole derivative as a minor product, accompanied by nitrogen atom insertion into the macrocycle. The major product was fully characterized via the combination of spectroscopy and X-ray crystallography as (nitrido)manganese(V) 6-azahemiporphycene.
Asunto(s)
Complejos de Coordinación/química , Manganeso/química , Compuestos Organometálicos/química , Porfirinas/química , Cristalografía por Rayos X , Modelos Moleculares , Estructura Molecular , Compuestos Organometálicos/síntesis químicaRESUMEN
The feasibility of a hydrogen-based economy relies very much on the availability of catalysts for the hydrogen evolution reaction (HER) that are not based on Pt or other noble elements. Significant breakthroughs have been achieved with certain first row transition metal complexes in terms of low overpotentials and large turnover rates, but the majority of reported work utilized purified and deoxygenated solvents (most commonly mixtures of organic solvents/acids). Realizing that the design of earth abundant metal catalysts that operate under truly ambient conditions remains an unresolved challenge, we have now developed an electronically tuned Co(III) corrole that can catalyze the HER from aqueous sulfuric acid at as low as -0.3 V vs NHE, with a turnover frequency of 600 s(-1) and â«10(7) catalytic turnovers. Under aerobic conditions, using H2O from naturally available sources without any pretreatment, the same complex catalyzes the reduction of H(+) with a Faradaic Yield (FY) of 52%. Density functional theory (DFT) calculations indicate that the electron density on a putative hydride species is delocalized off from the H atom into the macrocycle. This makes the protonation of a [Co(III)-H](-) species the rate determining step (rds) for the HER consistent with the experimental data.
RESUMEN
In this work, we assemble amphiphilic iron(III) corroles at air-water interfaces into well-defined quasi-two-dimensional molecular monolayers and theirs stacks for sensing of nitric oxide (NO). For this purpose, we use the Langmuir-Blodgett (LB) technique, which allows varying the packing density of iron(III) corroles anchored to the aqueous subphase via one molecular side. The stacks of ten down to three molecular monolayers on the front and back sides of the substrates are sufficiently optically dense to detect NO binding to the layers photometrically. This sensing with few layers demonstrates the potential for electronic detection, where very thin surface functionalizations enable efficient electronic communication between the layer and the (semi)conductor. Despite increasing optical densities, the spectral responses to NO exposure become smaller with increasing packing density until the collapse point of the monolayers is reached. This demonstrates that the highest molecular efficiency for binding and detection of NO is achieved at the smallest packing densities. This finding is relevant to all molecular sensor films with axial binding of analytes to the sensor molecules and demonstrates the advantage of sensor molecule assembly into monolayers on water-air interfaces using the LB technique.