Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Molecules ; 28(7)2023 Mar 27.
Artículo en Inglés | MEDLINE | ID: mdl-37049756

RESUMEN

Glycyrrhiza glabra and Sophora japonica (Fabaceae) are well-known medicinal plants with valuable secondary metabolites and pharmacological properties. The flavonoid-rich fractions of G. glabra roots and S. japonica leaves were prepared using Diaion column chromatography, and the confirmation of flavonoid richness was confirmed using UPLC-ESI-MS profiling and total phenolics and flavonoids assays. UPLC-ESI-MS profiling of the flavonoid-rich fraction of G. glabra roots and S. japonica leaves resulted in the tentative identification of 32 and 23 compounds, respectively. Additionally, the wound healing potential of topical preparations of each fraction, individually and in combination (1:1) ointment and gel preparations, were investigated in vivo, supported by histopathological examinations and biomarker evaluations, as well as molecular docking studies for the major constituents. The topical application of G. glabra ointment and gel, S. japonica ointment and gel and combination preparations significantly increase the wound healing rate and the reduction of oxidative stress in the wound area via MDA reduction and the elevation of reduced GSH and SOD levels as compared to the wound and Nolaver®-treated groups. The molecular docking study revealed that that major compounds in G. glabra and S. japonica can efficiently bind to the active sites of three proteins related to wound healing: glycogen synthase kinase 3-ß (GSK3-ß), matrix metalloproteinases-8 (MMP-8) and nitric oxide synthase (iNOS). Consequently, G. glabra roots and S. japonica leaves may be a rich source of bioactive metabolites with antioxidant, anti-inflammatory and wound healing properties.


Asunto(s)
Flavonoides , Glycyrrhiza , Flavonoides/farmacología , Flavonoides/análisis , Sophora japonica , Simulación del Acoplamiento Molecular , Glucógeno Sintasa Quinasa 3 , Pomadas , Extractos Vegetales/farmacología , Extractos Vegetales/química , Glycyrrhiza/química , Cicatrización de Heridas
2.
Pathol Res Pract ; 253: 155023, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-38081104

RESUMEN

Parkinson's disease (PD) is a debilitating neurological disorder characterized by the impairment of the motor system, resulting in symptoms such as resting tremor, cogwheel rigidity, bradykinesia, difficulty with gait, and postural instability. The occurrence of striatal dopamine insufficiency can be attributed to a notable decline in dopaminergic neurons inside the substantia nigra pars compacta. Additionally, the development of Lewy bodies serves as a pathological hallmark of PD. While current therapy approaches for PD aim to preserve dopaminergic neurons or replenish dopamine levels in the brain, it is important to acknowledge that achieving complete remission of the condition remains elusive. MicroRNAs (miRNAs, miR) are a class of small, non-coding ribonucleic acids involved in regulating gene expression at the post-transcriptional level. The miRNAs play a crucial part in the underlying pathogenic mechanisms of several neurodegenerative illnesses, including PD. The aim of this review is to explore the role of miRNAs in regulating genes associated with the onset and progression of PD, investigate the potential of miRNAs as a diagnostic tool, assess the effectiveness of targeting specific miRNAs as an alternative therapeutic strategy to impede disease advancement, and discuss the utilization of newly developed nanoparticles for delivering miRNAs as neurodegenerative therapies.


Asunto(s)
MicroARNs , Enfermedad de Parkinson , Humanos , MicroARNs/metabolismo , Enfermedad de Parkinson/diagnóstico , Enfermedad de Parkinson/genética , Enfermedad de Parkinson/terapia , Dopamina/uso terapéutico , Encéfalo/patología
3.
Pathol Res Pract ; 254: 155147, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38246033

RESUMEN

Asthma is a diverse inflammatory illness affecting the respiratory passages, leading to breathing challenges, bouts of coughing and wheezing, and, in severe instances, significant deterioration in quality of life. Epigenetic regulation, which involves the control of gene expression through processes such as post-transcriptional modulation of microRNAs (miRNAs), plays a role in the evolution of various asthma subtypes. In immune-mediated diseases, miRNAs play a regulatory role in the behavior of cells that form the airway structure and those responsible for defense mechanisms in the bronchi and lungs. They control various cellular processes such as survival, growth, proliferation, and the production of chemokines and immune mediators. miRNAs possess chemical and biological characteristics that qualify them as suitable biomarkers for diseases. They allow for the categorization of patients to optimize drug selection, thus streamlining clinical management and decreasing both the economic burden and the necessity for critical care related to the disease. This study provides a concise overview of the functions of miRNAs in asthma and elucidates their regulatory effects on the underlying processes of the disease. We provide a detailed account of the present status of miRNAs as biomarkers for categorizing asthma, identifying specific asthma subtypes, and selecting appropriate treatment options.


Asunto(s)
Asma , MicroARNs , Humanos , MicroARNs/genética , MicroARNs/uso terapéutico , Epigénesis Genética , Calidad de Vida , Asma/diagnóstico , Asma/genética , Asma/tratamiento farmacológico , Biomarcadores
4.
Biomed Pharmacother ; 159: 114238, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36640673

RESUMEN

Cisplatin (CP) is a broad-spectrum antineoplastic agent used to treat many human cancers. Nonetheless, most patients receiving CP suffer from cognitive deficits, a phenomenon termed "chemo-brain". Recently, vildagliptin (Vilda), a DPP-4 inhibitor, has demonstrated promising neuroprotective properties against various neurological diseases. Therefore, the present study aims to investigate the potential neuroprotective properties of Vilda against CP-induced neurotoxicity and elucidate the underlying molecular mechanisms. Chemo-brain was induced in Sprague-Dawley rats by i.p injection of CP at a dose of 5 mg/kg once weekly for four weeks. Vilda was administered daily at a dose (10 mg/kg; P.O) for four weeks. The results revealed that Vilda restored the cognitive function impaired by CP, as assessed by the Morris water maze, Y-maze, and passive avoidance tests. Moreover, Vilda alleviated the CP-induced neurodegeneration, as shown by toluidine blue staining, besides markedly reduced amyloid plaque deposition, as evidenced by Congo red staining. Notably, Vilda boosted cholinergic neurotransmission through the downregulation of the acetylcholinesterase enzyme. In addition, the neuroprotective mechanisms of Vilda include diminishing oxidative stress by reducing MDA levels while raising GSH levels and SOD activity, repressing neuronal apoptosis as shown by elevated Bcl-2 levels together with diminished Bax and caspase-3 expressions, inhibiting neuroinflammation as shown by decreased GFAP expression, and finally boosting hippocampal neurogenesis and survival by upregulating expressions of BDNF and PCNA. These effects were mainly mediated by activating AMPK/Akt/CREB signaling cascades. In summary, Vilda can be considered a promising candidate for guarding against CP-induced chemo-brain and neurodegeneration, thus improving the quality of life of cancer patients.


Asunto(s)
Fármacos Neuroprotectores , Proteínas Proto-Oncogénicas c-akt , Animales , Humanos , Ratas , Acetilcolinesterasa/metabolismo , Proteínas Quinasas Activadas por AMP/metabolismo , Apoptosis , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Cisplatino/farmacología , Cognición , Hipocampo , Fármacos Neuroprotectores/farmacología , Fármacos Neuroprotectores/uso terapéutico , Fármacos Neuroprotectores/metabolismo , Proteínas Proto-Oncogénicas c-akt/metabolismo , Calidad de Vida , Ratas Sprague-Dawley , Vildagliptina/farmacología , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo
5.
Eur J Pharmacol ; 955: 175908, 2023 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-37451422

RESUMEN

Drug-induced acute kidney injury (AKI) represents a potentially serious disorder associated with increased morbidity and mortality. The presented study investigated the ability of the oral antidiabetic agent, dapagliflozin (DAPA), to preserve the kidneys of rats subjected to vancomycin (VCM)-induced AKI. Rats were injected with VCM (400 mg/kg; i.p daily) for 7 successive days to induce AKI. Rats that received VCM were pretreated with DAPA at 5 or 10 mg/kg; p.o daily for 14 successive days. Vancomycin-treated rats depicted renal tubular damage, decline in renal function, and renal morphological alterations. Impairment of renal antioxidant machinery and propagation of renal cell apoptosis was apparent in the setting of VCM overdose. Pretreatment of VCM rats with DAPA, particularly at 10 mg/kg, effectively attenuated NADPH oxidase-4 (NOX4)-induced renal ROS, hampered activin A activation, and repressed miRNA-21/PTEN/pAKT signaling. These events were associated with impeding the expression of renal p-FOXO3a/t-FOXO3a ratio and promoting the nuclear localization of FOXO3a immnoexpression, enhancing renal antioxidant enzymes. At the same time, DAPA pretreatment improved renal function indices and alleviated the kidney injury markers, NGAL, and KIM-1, accompanied by restoring the normal renal histopathological structure. Regarding renal apoptosis, DAPA suppressed the expression of Bax/Bcl2 ratio and caspase-3. This study demonstrates that DAPA ameliorates VCM-induced AKI in rats via modulating renal oxidative stress, presumably by interfering with NOX4/activin A/miRNA-21 cascade and augmenting t-FOXO3a expression as well as dampening renal cell apoptosis.

6.
Int J Biol Macromol ; 230: 123189, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36623613

RESUMEN

Diabetes is the most prevalent metabolic disturbance disease and has been regarded globally as one of the principal causes of mortality. Diabetes is accompanied by several macrovascular complications, including stroke, coronary artery disease (CAD), and cardiomyopathy as a consequence of atherosclerosis. The onset of type 2 diabetes is closely related to insulin resistance (IR). miRNAs have been linked to various metabolic processes, including glucose homeostasis, regulation of lipid metabolism, gluconeogenesis, adipogenesis, glucose transporter type 4 expression, insulin sensitivity, and signaling. Consequently, miRNA dysregulation mediates IR in some target organs, comprising liver, muscle, and adipose tissue. Moreover, miRNAs are crucial in developing diabetes and its associated macrovascular complications through their roles in several signaling pathways implicated in inflammation, apoptosis, cellular survival and migration, the proliferation of vascular smooth muscle cells, neurogenesis, angiogenesis, autophagy, oxidative stress, cardiac remodeling, and fibrosis. Therefore, the purpose of this review is to clarify the role of miRNAs in hepatic, muscle, and adipose tissue IR and explain their roles in the pathogenesis of macrovascular diabetic complications, including stroke, CAD, and cardiomyopathy. Also, explain their roles in gestational diabetes mellitus (GDM). Besides, this review discusses the latest updates on the alteration of miRNA expression in diabetic macrovascular complications.


Asunto(s)
Complicaciones de la Diabetes , Diabetes Mellitus Tipo 2 , Resistencia a la Insulina , MicroARNs , Accidente Cerebrovascular , Humanos , Resistencia a la Insulina/genética , MicroARNs/genética , MicroARNs/metabolismo , Diabetes Mellitus Tipo 2/complicaciones , Diabetes Mellitus Tipo 2/genética , Diabetes Mellitus Tipo 2/metabolismo , Complicaciones de la Diabetes/metabolismo , Accidente Cerebrovascular/complicaciones , Insulina/metabolismo
7.
Pharmaceutics ; 15(2)2023 Feb 01.
Artículo en Inglés | MEDLINE | ID: mdl-36839811

RESUMEN

Lipid nanocapsules (LNCs) are promising for transdermal drug delivery due to their higher permeability-enhancing effects compared to polymeric nanoparticles. Lavender oil is an essential oil consisting of several terpenes (primarily linalool and linalyl acetate) known for their profound permeation-enhancing action. In the present work, we successfully encapsulated asenapine maleate (a second-generation antipsychotic that is highly metabolized by the liver, reducing its oral bioavailability) into biocompatible LNCs for transdermal application using a novel oily phase, i.e., lavender oil (LO-LNCs). A comparative study was conducted to determine the effects of different oily phases (i.e., Miglyol® 812, Labrafil® M1944CS, and Labrafac™ PG) on the LNCs. Surfactant types (Kolliphor® HS15, Kolliphor® EL and Tween80) and oil:surfactant ratios were studied. Blank and asenapine-loaded LNCs were optimized for particle size, polydispersity index, zeta potential, drug content and ex vivo skin permeation. Lavender oil and Labrafil® showed smaller vesicular sizes, while LO-LNCs increased the permeation of ASP across rat skin. In vivo pharmacokinetics revealed that LO-LNCs could increase the ASP Cmax via transdermal application by fourfold compared to oral suspension. They increased the bioavailability of ASP by up to 52% and provided sustained release for three days. The pharmacokinetic profile of the LO-LNCs was compared to ASP-loaded invasomes (discussed in a previous study) to emphasize LNCs' transdermal delivery behavior.

8.
Pathol Res Pract ; 246: 154529, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-37196470

RESUMEN

Globally, esophageal cancer (EC) is the 6th leading cause of cancer-related deaths and the second deadliest gastrointestinal cancer. Multiple genetic and epigenetic factors, such as microRNAs (miRNAs), influence its onset and progression. miRNAs are short nucleic acid molecules that can regulate multiple cellular processes by regulating gene expression. Therefore, EC initiation, progression, apoptosis evasions, invasion capacity, promotion, angiogenesis, and epithelial-mesenchymal transition (EMT) enhancement are associated with miRNA expression dysregulation. Wnt/-catenin signaling, Mammalian target of rapamycin (mTOR)/P-gp, phosphoinositide-3-kinase (PI3K)/AKT/c-Myc, epidermal growth factor receptor (EGFR), and transforming growth factor (TGF)-ß signaling are crucial pathways in EC that are controlled by miRNAs. This review was conducted to provide an up-to-date assessment of the role of microRNAs in EC pathogenesis and their modulatory effects on responses to various EC treatment modalities.


Asunto(s)
Neoplasias Esofágicas , MicroARNs , Humanos , MicroARNs/genética , Neoplasias Esofágicas/patología , Vía de Señalización Wnt/genética , Factor de Crecimiento Transformador beta/metabolismo , Transición Epitelial-Mesenquimal/genética , Regulación Neoplásica de la Expresión Génica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA