Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Am J Physiol Heart Circ Physiol ; 327(3): H660-H665, 2024 Sep 01.
Artículo en Inglés | MEDLINE | ID: mdl-39058431

RESUMEN

Endothelial function declines with aging and independently predicts future cardiovascular disease (CVD) events. Diving also impairs endothelial function in humans. Yet, dolphins, being long-lived mammals adapted to diving, undergo repetitive cycles of tissue hypoxia-reoxygenation and disturbed shear stress without manifesting any apparent detrimental effects, as CVD is essentially nonexistent in these animals. Thus, dolphins may be a unique model of healthy arterial aging and may provide insights into strategies for clinical medicine. Emerging evidence shows that the circulating milieu (bioactive factors in the blood) is at least partially responsible for transducing reductions in age-related endothelial function. To assess whether dolphins have preserved endothelial function with aging because of a protected circulating milieu, we tested if the serum (pool of the circulating milieu) of bottlenose dolphins (Tursiops truncatus) induces the same arterial aging phenotype as the serum of age-equivalent humans. We incubated conduit arteries from young and old mice with dolphin and human serum and measured endothelial function ex vivo via endothelium-dependent dilation to acetylcholine. Although young arteries incubated with serum from midlife/older adult human serum had lower endothelial function, those incubated with dolphin serum consistently maintained high endothelial function regardless of the age of the donor. Thus, studying the arterial health of dolphins could lead to potential novel therapeutic strategies to improve age-related endothelial dysfunction in humans.NEW & NOTEWORTHY We demonstrate that, unlike serum of midlife/older adult humans, age-matched dolphin serum elicits higher endothelial function ex vivo in young mouse carotid arteries, suggesting that the circulating milieu of bottlenose dolphins may be geroprotective. We propose that dolphins are a novel model to investigate potential novel therapeutic strategies to mitigate age-related endothelial dysfunction in humans.


Asunto(s)
Delfín Mular , Endotelio Vascular , Vasodilatación , Animales , Masculino , Humanos , Endotelio Vascular/fisiopatología , Envejecimiento/fisiología , Modelos Animales , Femenino , Envejecimiento Saludable , Factores de Edad , Ratones Endogámicos C57BL , Vasodilatadores/farmacología , Arterias/fisiopatología
2.
Am J Physiol Heart Circ Physiol ; 326(5): H1279-H1290, 2024 05 01.
Artículo en Inglés | MEDLINE | ID: mdl-38517225

RESUMEN

The circulating milieu, bioactive molecules in the bloodstream, is altered with aging and interfaces constantly with the vasculature. This anatomic juxtaposition suggests that circulating factors may actively modulate arterial function. Here, we developed a novel, translational experimental model that allows for direct interrogation of the influence of the circulating milieu on age-related arterial dysfunction (aortic stiffening and endothelial dysfunction). To do so, we exposed young and old mouse arteries to serum from young and old mice and young and midlife/older (ML/O) adult humans. We found that old mouse and ML/O adult human, but not young, serum stiffened young mouse aortic rings, assessed via elastic modulus (mouse and human serum, P = 0.003 vs. young serum control), and impaired carotid artery endothelial function, assessed by endothelium-dependent dilation (EDD) (mouse serum, P < 0.001; human serum, P = 0.006 vs. young serum control). Furthermore, young mouse and human, but not old, serum reduced aortic elastic modulus (mouse serum, P = 0.009; human serum, P < 0.001 vs. old/MLO serum control) and improved EDD (mouse and human serum, P = 0.015 vs. old/MLO serum control) in old arteries. In human serum-exposed arteries, in vivo arterial function assessed in the human donors correlated with circulating milieu-modulated arterial function in young mouse arteries (aortic stiffness, r = 0.634, P = 0.005; endothelial function, r = 0.609, P = 0.004) and old mouse arteries (aortic stiffness, r = 0.664, P = 0.001; endothelial function, r = 0.637, P = 0.003). This study establishes novel experimental approaches for directly assessing the effects of the circulating milieu on arterial function and implicates changes in the circulating milieu as a mechanism of in vivo arterial aging.NEW & NOTEWORTHY Changes in the circulating milieu with advancing age may be a mechanism underlying age-related arterial dysfunction. Ex vivo exposure of young mouse arteries to the circulating milieu from old mice or midlife/older adults impairs arterial function whereas exposure of old mouse arteries to the circulating milieu from young mice or young adults improves arterial function. These findings establish that the circulating milieu directly influences arterial function with aging.


Asunto(s)
Envejecimiento , Endotelio Vascular , Ratones Endogámicos C57BL , Rigidez Vascular , Vasodilatación , Animales , Humanos , Masculino , Adulto , Persona de Mediana Edad , Femenino , Endotelio Vascular/fisiopatología , Anciano , Factores de Edad , Ratones , Aorta/fisiopatología , Arterias Carótidas/fisiopatología , Adulto Joven , Módulo de Elasticidad
3.
Am J Physiol Heart Circ Physiol ; 325(5): H1039-H1058, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37656130

RESUMEN

Cardiovascular disease (CVD) is a leading cause of morbidity and mortality worldwide, and senescent cells have emerged as key contributors to its pathogenesis. Senescent cells exhibit cell cycle arrest and secrete a range of proinflammatory factors, termed the senescence-associated secretory phenotype (SASP), which promotes tissue dysfunction and exacerbates CVD progression. Omics technologies, specifically transcriptomics and proteomics, offer powerful tools to uncover and define the molecular signatures of senescent cells in cardiovascular tissue. By analyzing the comprehensive molecular profiles of senescent cells, omics approaches can identify specific genetic alterations, gene expression patterns, protein abundances, and metabolite levels associated with senescence in CVD. These omics-based discoveries provide insights into the mechanisms underlying senescence-induced cardiovascular damage, facilitating the development of novel diagnostic biomarkers and therapeutic targets. Furthermore, integration of multiple omics data sets enables a systems-level understanding of senescence in CVD, paving the way for precision medicine approaches to prevent or treat cardiovascular aging and its associated complications.


Asunto(s)
Enfermedades Cardiovasculares , Sistema Cardiovascular , Humanos , Senescencia Celular/genética , Envejecimiento/genética , Células Cultivadas , Enfermedades Cardiovasculares/genética
4.
Am J Physiol Heart Circ Physiol ; 324(6): H893-H904, 2023 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-37115626

RESUMEN

The aorta stiffens with aging in both men and women, which predicts cardiovascular mortality. Aortic wall structural and extracellular matrix (ECM) remodeling, induced in part by chronic low-grade inflammation, contribute to aortic stiffening. Male mice are an established model of aortic aging. However, there is little information regarding whether female mice are an appropriate model of aortic aging in women, which we aimed to elucidate in the present study. We assessed two strains of mice and found that in C57BL/6N mice, in vivo aortic stiffness (pulse wave velocity, PWV) was higher with aging in both sexes, whereas in B6D2F1 mice, PWV was higher in old versus young male mice, but not in old versus young female mice. Because the age-related stiffening that occurs in men and women was reflected in male and female C57BL/6N mice, we examined the mechanisms of stiffening in this strain. In both sexes, aortic modulus of elasticity (pin myography) was lower in old mice, occurred in conjunction with and was related to higher plasma levels of the elastin-degrading enzyme matrix metalloproteinase-9 (MMP-9), and was accompanied by higher numbers of aortic elastin breaks and higher abundance of adventitial collagen-1. Plasma levels of the inflammatory cytokines interferon-γ, interleukin 6, and monocyte chemoattractant protein-1 were higher in both sexes of old mice. In conclusion, female C57BL/6N mice exhibit aortic stiffening, reduced modulus of elasticity and structural/ECM remodeling, and associated increases in MMP-9 and systemic inflammation with aging, and thus are an appropriate model of aortic aging in women.NEW & NOTEWORTHY Our study demonstrates that with aging, female C57BL/6N mice exhibit higher in vivo aortic stiffness, reduced modulus of elasticity, aortic wall structural and extracellular matrix remodeling, and elevations in systemic inflammation. These changes are largely reflective of those that occur with aging in women. Thus, female C57BL/6N mice are a viable model of human aortic aging and the utility of these animals should be considered in future biomedical investigations.


Asunto(s)
Elastina , Rigidez Vascular , Humanos , Animales , Ratones , Femenino , Masculino , Metaloproteinasa 9 de la Matriz , Análisis de la Onda del Pulso , Ratones Endogámicos C57BL , Aorta , Envejecimiento , Inflamación
5.
Amino Acids ; 53(12): 1927-1939, 2021 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-34089390

RESUMEN

Proline dehydrogenase (PRODH) is a mitochondrial inner membrane flavoprotein critical for cancer cell survival under stress conditions and newly recognized as a potential target for cancer drug development. Reversible (competitive) and irreversible (suicide) inhibitors of PRODH have been shown in vivo to inhibit cancer cell growth with excellent host tolerance. Surprisingly, the PRODH suicide inhibitor N-propargylglycine (N-PPG) also induces rapid decay of PRODH with concordant upregulation of mitochondrial chaperones (HSP-60, GRP-75) and the inner membrane protease YME1L1, signifying activation of the mitochondrial unfolded protein response (UPRmt) independent of anticancer activity. The present study was undertaken to address two aims: (i) use PRODH overexpressing human cancer cells (ZR-75-1) to confirm the UPRmt inducing properties of N-PPG relative to another equipotent irreversible PRODH inhibitor, thiazolidine-2-carboxylate (T2C); and (ii) employ biochemical and transcriptomic approaches to determine if orally administered N-PPG can penetrate the blood-brain barrier, essential for its future use as a brain cancer therapeutic, and also potentially protect normal brain tissue by inducing mitohormesis. Oral daily treatments of N-PPG produced a dose-dependent decline in brain mitochondrial PRODH protein without detectable impairment in mouse health; furthermore, mice repeatedly dosed with 50 mg/kg N-PPG showed increased brain expression of the mitohormesis associated protease, YME1L1. Whole brain transcriptome (RNAseq) analyses of these mice revealed significant gene set enrichment in N-PPG stimulated neural processes (FDR p < 0.05). Given this in vivo evidence of brain bioavailability and neural mitohormesis induction, N-PPG appears to be unique among anticancer agents and should be evaluated for repurposing as a pharmaceutical capable of mitigating the proteotoxic mechanisms driving neurodegenerative disorders.


Asunto(s)
Alquinos/farmacología , Antineoplásicos/farmacología , Encéfalo/efectos de los fármacos , Glicina/análogos & derivados , Prolina Oxidasa/antagonistas & inhibidores , Prolina/metabolismo , ATPasas Asociadas con Actividades Celulares Diversas/metabolismo , Animales , Barrera Hematorretinal/efectos de los fármacos , Barrera Hematorretinal/metabolismo , Encéfalo/metabolismo , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Femenino , Glicina/farmacología , Humanos , Masculino , Ratones , Mitocondrias/efectos de los fármacos , Mitocondrias/metabolismo , Proteínas Mitocondriales/metabolismo , Prolina/análogos & derivados , Prolina/farmacología , Tiazolidinas/farmacología , Transcriptoma/efectos de los fármacos , Respuesta de Proteína Desplegada/efectos de los fármacos
6.
Am J Physiol Heart Circ Physiol ; 327(1): H000, 2024 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-38958689
10.
J Appl Physiol (1985) ; 137(1): 194-222, 2024 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-38813611

RESUMEN

Cardiovascular diseases (CVDs) are the leading cause of death in the United States. However, disparities in CVD-related morbidity and mortality exist as marginalized racial and ethnic groups are generally at higher risk for CVDs (Black Americans, Indigenous People, South and Southeast Asians, Native Hawaiians, and Pacific Islanders) and/or development of traditional CVD risk factors (groups above plus Hispanics/Latinos) relative to non-Hispanic Whites (NHW). In this comprehensive review, we outline emerging evidence suggesting these groups experience accelerated arterial dysfunction, including vascular endothelial dysfunction and large elastic artery stiffening, a nontraditional CVD risk factor that may predict risk of CVDs in these groups with advancing age. Adverse exposures to social determinants of health (SDOH), specifically lower socioeconomic status (SES), are exacerbated in most of these groups (except South Asians-higher SES) and may be a potential mediator of accelerated arterial aging. SES negatively influences the ability of marginalized racial and ethnic groups to meet aerobic exercise guidelines, the first-line strategy to improve arterial function, due to increased barriers, such as time and financial constraints, lack of motivation, facility access, and health education, to performing conventional aerobic exercise. Thus, identifying alternative interventions to conventional aerobic exercise that 1) overcome these common barriers and 2) target the biological mechanisms of aging to improve arterial function may be an effective, alternative method to aerobic exercise to ameliorate accelerated arterial aging and reduce CVD risk. Importantly, dedicated efforts are needed to assess these strategies in randomized-controlled clinical trials in these marginalized racial and ethnic groups.


Asunto(s)
Envejecimiento , Enfermedades Cardiovasculares , Etnicidad , Clase Social , Humanos , Envejecimiento/fisiología , Envejecimiento/etnología , Enfermedades Cardiovasculares/etnología , Enfermedades Cardiovasculares/fisiopatología , Arterias/fisiopatología , Grupos Raciales , Factores de Riesgo , Determinantes Sociales de la Salud/etnología
11.
Aging Cell ; 23(3): e14060, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38062873

RESUMEN

Cellular senescence and the senescence-associated secretory phenotype (SASP) contribute to age-related arterial dysfunction, in part, by promoting oxidative stress and inflammation, which reduce the bioavailability of the vasodilatory molecule nitric oxide (NO). In the present study, we assessed the efficacy of fisetin, a natural compound, as a senolytic to reduce vascular cell senescence and SASP factors and improve arterial function in old mice. We found that fisetin decreased cellular senescence in human endothelial cell culture. In old mice, vascular cell senescence and SASP-related inflammation were lower 1 week after the final dose of oral intermittent (1 week on-2 weeks off-1 weeks on dosing) fisetin supplementation. Old fisetin-supplemented mice had higher endothelial function. Leveraging old p16-3MR mice, a transgenic model allowing genetic clearance of p16INK4A -positive senescent cells, we found that ex vivo removal of senescent cells from arteries isolated from vehicle- but not fisetin-treated mice increased endothelium-dependent dilation, demonstrating that fisetin improved endothelial function through senolysis. Enhanced endothelial function with fisetin was mediated by increased NO bioavailability and reduced cellular- and mitochondrial-related oxidative stress. Arterial stiffness was lower in fisetin-treated mice. Ex vivo genetic senolysis in aorta rings from p16-3MR mice did not further reduce mechanical wall stiffness in fisetin-treated mice, demonstrating lower arterial stiffness after fisetin was due to senolysis. Lower arterial stiffness with fisetin was accompanied by favorable arterial wall remodeling. The findings from this study identify fisetin as promising therapy for clinical translation to target excess cell senescence to treat age-related arterial dysfunction.


Asunto(s)
Arterias , Senescencia Celular , Flavonoles , Ratones , Humanos , Animales , Senescencia Celular/genética , Suplementos Dietéticos , Inflamación
12.
Exp Gerontol ; 173: 112105, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36731386

RESUMEN

Age-associated cardiovascular (CV) dysfunction, namely arterial dysfunction, is a key antecedent to the development of CV disease (CVD). Arterial dysfunction with aging is characterized by impaired vascular endothelial function and stiffening of the large elastic arteries, each of which is an independent predictor of CVD. These processes are largely mediated by an excess production of reactive oxygen species (ROS) and an increase in chronic, low-grade inflammation that ultimately leads to a reduction in bioavailability of the vasodilatory molecule nitric oxide. Additionally, there are other fundamental aging mechanisms that may contribute to excessive ROS and inflammation termed the "hallmarks of aging"; these additional mechanisms of arterial dysfunction may represent therapeutic targets for improving CV health with aging. Aerobic exercise is the most well-known and effective intervention to prevent and treat the effects of aging on CV dysfunction. However, the majority of mid-life and older (ML/O) adults do not meet recommended exercise guidelines due to traditional barriers to aerobic exercise, such as reduced leisure time, motivation, or access to fitness facilities. Therefore, it is a biomedical research priority to develop and implement time- and resource-efficient alternative strategies to aerobic exercise to reduce the burden of CVD in ML/O adults. Alternative strategies that mimic or are inspired by aerobic exercise, that target pathways specific to the fundamental mechanisms of aging, represent a promising approach to accomplish this goal.


Asunto(s)
Enfermedades Cardiovasculares , Ejercicio Físico , Humanos , Especies Reactivas de Oxígeno/metabolismo , Enfermedades Cardiovasculares/prevención & control , Inflamación , Endotelio Vascular/metabolismo
13.
Hypertension ; 80(10): 2072-2087, 2023 10.
Artículo en Inglés | MEDLINE | ID: mdl-37593877

RESUMEN

BACKGROUND: Here, we assessed the role of cellular senescence and the senescence associated secretory phenotype (SASP) in age-related aortic stiffening and endothelial dysfunction. METHODS: We studied young (6-8 mo) and old (27-29 mo) p16-3MR mice, which allows for genetic-based clearance of senescent cells with ganciclovir (GCV). We also treated old C57BL/6N mice with the senolytic ABT-263. RESULTS: In old mice, GCV reduced aortic stiffness assessed by aortic pulse wave velocity (PWV; 477±10 vs. 382±7 cm/s, P<0.05) to young levels (old-GCV vs. young-vehicle, P=0.35); ABT-263 also reduced aortic PWV in old mice (446±9 to 356±11 cm/s, P<0.05). Aortic adventitial collagen was reduced by GCV (P<0.05) and ABT-263 (P=0.12) in old mice. To show an effect of the circulating SASP, we demonstrated that plasma exposure from Old-vehicle p16-3MR mice, but not from Old-GCV mice, induced aortic stiffening assessed ex vivo (elastic modulus; P<0.05). Plasma proteomics implicated glycolysis in circulating SASP-mediated aortic stiffening. In old p16-3MR mice, GCV increased endothelial function assessed via peak carotid artery endothelium-dependent dilation (EDD; Old-GCV, 94±1% vs. Old-vehicle, 84±2%, P<0.05) to young levels (Old-GCV vs. young-vehicle, P=0.98), and EDD was higher in old C57BL/6N mice treated with ABT-263 vs. vehicle (96±1% vs. 82±3%, P<0.05). Improvements in endothelial function were mediated by increased nitric oxide (NO) bioavailability (P<0.05) and reduced oxidative stress (P<0.05). Circulating SASP factors related to NO signaling were associated with greater NO-mediated EDD following senescent cell clearance. CONCLUSIONS: Cellular senescence and the SASP contribute to vascular aging and senolytics hold promise for improving age-related vascular function.


Asunto(s)
Senoterapéuticos , Enfermedades Vasculares , Ratones , Animales , Ratones Endogámicos C57BL , Análisis de la Onda del Pulso , Senescencia Celular , Envejecimiento , Arterias , Óxido Nítrico
14.
Aging Cancer ; 2(1-2): 45-69, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-34212156

RESUMEN

Cardiovascular diseases (CVD) are the leading cause of death worldwide, and age is by far the greatest risk factor for developing CVD. Vascular dysfunction, including endothelial dysfunction and arterial stiffening, is responsible for much of the increase in CVD risk with aging. A key mechanism involved in vascular dysfunction with aging is oxidative stress, which reduces the bioavailability of nitric oxide (NO) and induces adverse changes to the extracellular matrix of the arterial wall (e.g., elastin fragmentation/degradation, collagen deposition) and an increase in advanced glycation end products, which form crosslinks in arterial wall structural proteins. Although vascular dysfunction and CVD are most prevalent in older adults, several conditions can "accelerate" these events at any age. One such factor is chemotherapy with anthracyclines, such as doxorubicin (DOXO), to combat common forms of cancer. Children, adolescents and young adults treated with these chemotherapeutic agents demonstrate impaired vascular function and an increased risk of future CVD development compared with healthy age-matched controls. Anthracycline treatment also worsens vascular dysfunction in mid-life (50-64 years of age) and older (65 and older) adults such that endothelial dysfunction and arterial stiffness are greater compared to age-matched controls. Collectively, these observations indicate that use of anthracycline chemotherapeutic agents induce a vascular aging-like phenotype and that the latter contributes to premature CVD in cancer survivors exposed to these agents. Here, we review the existing literature supporting these ideas, discuss potential mechanisms as well as interventions that may protect arteries from these adverse effects, identify research gaps and make recommendations for future research.

15.
Mol Cancer Ther ; 18(8): 1374-1385, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-31189611

RESUMEN

Proline dehydrogenase (PRODH) is a p53-inducible inner mitochondrial membrane flavoprotein linked to electron transport for anaplerotic glutamate and ATP production, most critical for cancer cell survival under microenvironmental stress conditions. Proposing that PRODH is a unique mitochondrial cancer target, we structurally model and compare its cancer cell activity and consequences upon exposure to either a reversible (S-5-oxo: S-5-oxo-2-tetrahydrofurancarboxylic acid) or irreversible (N-PPG: N-propargylglycine) PRODH inhibitor. Unlike 5-oxo, the suicide inhibitor N-PPG induces early and selective decay of PRODH protein without triggering mitochondrial destruction, consistent with N-PPG activation of the mitochondrial unfolded protein response. Fly and breast tumor (MCF7)-xenografted mouse studies indicate that N-PPG doses sufficient to phenocopy PRODH knockout and induce its decay can be safely and effectively administered in vivo Among breast cancer cell lines and tumor samples, PRODH mRNA expression is subtype dependent and inversely correlated with glutaminase (GLS1) expression; combining inhibitors of PRODH (S-5-oxo and N-PPG) and GLS1 (CB-839) produces additive if not synergistic loss of cancer cell (ZR-75-1, MCF7, DU4475, and BT474) growth and viability. Although PRODH knockdown alone can induce cancer cell apoptosis, the anticancer potential of either reversible or irreversible PRODH inhibitors is strongly enhanced when p53 is simultaneously upregulated by an MDM2 antagonist (MI-63 and nutlin-3). However, maximum anticancer synergy is observed in vitro when the PRODH suicide inhibitor, N-PPG, is combined with both GLS1-inhibiting and a p53-upregulating MDM2 antagonist. These findings provide preclinical rationale for the development of N-PPG-like PRODH inhibitors as cancer therapeutics to exploit synthetic lethal interactions with p53 upregulation and GLS1 inhibition.


Asunto(s)
Glutaminasa/antagonistas & inhibidores , Glutaminasa/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Prolina Oxidasa/antagonistas & inhibidores , Prolina Oxidasa/genética , Mutaciones Letales Sintéticas , Proteína p53 Supresora de Tumor/genética , Animales , Sitios de Unión , Línea Celular Tumoral , Activación Enzimática , Glutaminasa/química , Humanos , Ratones , Mitocondrias/efectos de los fármacos , Modelos Moleculares , Estructura Molecular , Prolina Oxidasa/química , Unión Proteica , Relación Estructura-Actividad , Activación Transcripcional , Proteína p53 Supresora de Tumor/química , Proteína p53 Supresora de Tumor/metabolismo , Respuesta de Proteína Desplegada
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA