Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Clin Orthop Relat Res ; 480(8): 1585-1600, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35383614

RESUMEN

BACKGROUND: Wear and corrosion at modular neck tapers in THA can lead to major clinical implications such as periprosthetic osteolysis, adverse local tissue reactions, or implant failure. The material degradation processes at the taper interface are complex and involve fretting corrosion, third-body abrasion, as well as electrochemical and crevice corrosion. One phenomenon in this context is imprinting of the head taper, where the initially smooth surface develops a topography that reflects the rougher neck taper profile. The formation mechanism of this specific phenomenon, and its relation to other observed damage features, is unclear. An analysis of retrieved implants may offer some insights into this process. QUESTIONS/PURPOSES: (1) Is imprinting related to time in situ of the implants and to the taper damage modes of corrosion and fretting? (2) Are implant design parameters like neck taper profile, stem material, or head seating associated with the formation of imprinting? (3) Is imprinting created by an impression of the neck taper profile or can a different mechanistic explanation for imprinting be derived? METHODS: Thirty-one THAs with cobalt-chromium-molybdenum-alloy (CoCrMo) heads retrieved between 2013 and 2019 at revision surgery from an institutional registry were investigated. Inclusion criteria were: 12/14 tapers, a head size of 36 mm or smaller, time in situ more than 1 year, and intact nonmodular stems without sleeve adaptors. After grouping the residual THAs according to stem type, stem material, and manufacturer, all groups of three or more were included. Of the resulting subset of 31 retrievals, nine THAs exhibited a still assembled head-neck taper connection. The median (range) time in situ was 5 years (1 to 23). Two stem materials (21 titanium-alloy and 10 stainless steel), three kinds of bearing couples (11 metal-on-metal, 13 metal-on-polyethylene, and seven dual-mobility heads), and two different neck taper profiles (six wavy profile and 25 fluted profile) were present in the collection. Four THAs exhibited signs of eccentric head seating. The 31 investigated THAs represented 21% of the retrieved THAs with a CoCrMo alloy head during the specified period.At the head tapers, the damage modes of corrosion, fretting, and imprinting were semiquantitatively rated on a scale between 0 (no corrosion/fretting/imprinting) and 3 (severe corrosion/fretting/imprinting). Corrosion and fretting were assessed applying the Goldberg score, with the modification that the scale started at 0 and not at 1. Imprinting was assessed with a custom scoring system. Rating was done individually at the proximal and distal head taper half and summed to one total damage score for each retrieval and damage mode. Correlations between the damage modes and time in situ and between the damage modes among each other, were assessed using the Spearman rank order correlation coefficient (ρ). Associations between imprinting and implant design parameters were investigated by comparing the total imprinting score distributions with the Mann-Whitney U-test. Metallographically prepared cross-sections of assembled head-neck taper connections were examined by optical microscopy and disassembled head and neck taper surfaces were assessed by scanning electron microscopy (SEM). RESULTS: The imprinting damage score increased with time in-situ (ρ = 0.72; p < 0.001) and the corrosion damage score (ρ = 0.63; p < 0.001) but not with the fretting damage score (ρ = 0.35; p = 0.05). There was no difference in total imprinting score comparing neck taper profiles or stem materials, with the numbers available. Eccentric head seating had elevated total imprinting score (median 6 [interquartile range 0]) compared with centric seating (median 1 [2]; p = 0.001). Light optical investigations showed that imprinting can be present on the head taper surfaces even if the depth of abraded material exceeds the neck taper profile height. SEM investigations showed bands of pitting corrosion in the imprinted grooves. CONCLUSION: The microscopic investigations suggest that imprinting is not an independent phenomenon but a process that accompanies the continuous material degradation of the head taper surface because of circular damage on the passive layer induced by grooved neck tapers. CLINICAL RELEVANCE: Material loss from head-neck taper connections involving CoCrMo alloy heads is a source of metal ions and could potentially be reduced if hip stems with smooth neck tapers were used. Surgeons should pay attention to the exact centric seating of the femoral head onto the stem taper during joining of the parts.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Artroplastia de Reemplazo de Cadera/efectos adversos , Aleaciones de Cromo , Prótesis de Cadera/efectos adversos , Humanos , Diseño de Prótesis , Falla de Prótesis
2.
J Mech Behav Biomed Mater ; 128: 105119, 2022 04.
Artículo en Inglés | MEDLINE | ID: mdl-35149374

RESUMEN

In the present work, the influence of the trunnion surface topography and the near-surface residual stresses on the joining process of a taper connection is examined using a replicate of the realistic taper connection as it occurs in conventional hip joint implants. The focus of the work is on the surface of the taper trunnion made of Ti6Al4V ELI and its effect on the connection stability with a CoCrMo counterpart. In this regard, the interrelation between surface topography, residual stresses, the joining behavior and the corrosion behavior under dynamic loading have been systematically investigated. For this purpose, taper trunnions produced by means of three different machining processes were considered, i.e. fine machining, rough machining and a novel furrowing process. These mechanical surface treatments result in different surface topographies and near-surface work hardening and residual stress states. The results show that the primary taper stability is hardly altered by the different types of trunnion surfaces. For all three surface states, the joining/dismantling procedure did not change the residual stress state at the surface. After corrosion testing under dynamic loading, the fine machined taper surface exhibits the highest stability. Moreover, fine machined tapers consolidated during the dynamic corrosion experiment as the ratio between joining and dismantling force increased from 0.49 ± 0.04 to 0.83 ± 0.08. For the furrowed and rough machined taper surfaces, the connection stability showed a tendency towards increase and decrease, respectively, in the course of dynamic corrosion testing. The results indicate that for choosing an optimal taper trunnion surface, the effects of corrosion must be taken into account.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Prótesis de Cadera , Corrosión , Humanos , Diseño de Prótesis , Falla de Prótesis
3.
Acta Biomater ; 145: 427-435, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35417798

RESUMEN

Corrosion at the modular taper junctions in total hip arthroplasty is clinically relevant because wear particles and ions generated at this interface can lead to adverse local tissue reactions or even implant failure. In vitro tribo-corrosion tests are usually accomplished in saline solutions or calf serum (CS), but the addition of H2O2 and FeCl3 have been suggested to mimic inflammatory conditions in the joint. Inflammatory conditions may aggravate corrosive processes and, therefore, should lead in vitro to a more severe and realistic tribo-corrosive material attack. Corrosion testing at 12/14 tapers comprising a CoCrMo head taper and a Ti6Al4V trunnion was accomplished in five electrolytes (Ringer's solution (RS), RS with 30 mM H2O2 and/or 0.7 mM FeCl3 and CS) under dynamical loading for five million cycles. Resulting material loss was determined gravimetrically and by ion analysis. The tribo-corrosive material degradation was investigated by light and electron microscopy. FeCl3 enhanced the material loss from taper connections while H2O2 did not lead to a significant alteration of total material loss. In comparison to pure RS, corrosion testing in CS decreased material loss at the head taper while it increased material loss at the trunnion. The combination of FeCl3 and H2O2 led to an enhanced occurrence of micro cracks at the trunnion surface. Adding FeCl3 and optionally also H2O2 aggravates material loss in in vitro corrosion testing of taper junctions and leads to harsher and probably more realistic testing conditions. STATEMENT OF SIGNIFICANCE: Tribo-corrosive processes at taper connections in hip implants are complex and can lead to major clinical implications. Joint inflammation is assumed to aggravate taper corrosion in vivo, why FeCl3 and H2O2 have been proposed as additives to electrolytes to simulate inflammatory conditions in vitro. Often used fretting test setups, however, do not involve real taper geometries. Besides, testing is often accomplished in saline solutions or calf serum, which do not induce a clinically significant amount of corrosive material degradation. This study presents an approach to increase tribo-corrosive processes at realistic taper connections by adding FeCl3 and/or H2O2. Unlike H2O2, FeCl3 increased material loss from taper connections. The combination of both additives enhanced micro crack formation at the trunnion surfaces.


Asunto(s)
Artroplastia de Reemplazo de Cadera , Cáusticos , Prótesis de Cadera , Artroplastia de Reemplazo de Cadera/efectos adversos , Corrosión , Humanos , Peróxido de Hidrógeno , Diseño de Prótesis , Falla de Prótesis
4.
Materials (Basel) ; 13(21)2020 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-33158086

RESUMEN

Due to its mechanical properties and good biocompatibility, Ti6Al4V ELI (extra low interstitials) is widely used in medical technology, especially as material for implants. The specific microstructures that are approved for this purpose are listed in the standard ISO 20160:2006. Inductive short-term heat treatment is suitable for the adjustment of near-surface component properties such as residual stress conditions. A systematic evaluation of the Ti6Al4V microstructures resulting from short-term heat treatment is presently missing. In order to assess the parameter field that leads to suitable microstructures for load-bearing implants, dilatometer experiments have been conducted. For this purpose, dilatometer experiments with heating rates up to 1000 °C/s, holding times between 0.5 and 30 s and cooling rates of 100 and 1000 °C/s were systematically examined in the present study. Temperatures up to 950 °C and a holding time of 0.5 s led to microstructures, which are approved for medical applications according to the standard ISO 20160:2006. Below 950 °C, longer holding times can also be selected.

5.
Materials (Basel) ; 13(9)2020 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-32344822

RESUMEN

Corrosion of taper connections in total hip arthroplasty remains of concern, as particles and ions generated by corrosive processes can cause clinical problems such as periprosthetic osteolysis or adverse reaction to metallic debris. Mechanical surface treatments that introduce compressive residual stresses (RSs) in metallic materials can lead to a better performance in terms of fretting and fatigue and may lower the susceptibility to corrosion. The study investigates the impact of mechanical surface treatments on the corrosion behavior of metallic biomaterials. Compressive RSs were introduced by deep rolling and microblasting in Ti6Al4V and CoCrMo samples. Polished samples served as reference. Corrosion behavior was characterized by repeated anodic polarization. Residual stresses of up to about -900 MPa were introduced by deep rolling with a reach in depth of approximately 500 µm. Microblasting led to compressive RSs up to approximately -800 and -600 MPa for Ti6Al4V and CoCrMo, respectively, in the immediate vicinity of the surface. For Ti6Al4V, microblasting resulted in decreased corrosion resistance with lower breakdown potentials and/or increased passive current densities in comparison to the polished and deep-rolled samples. The corrosion behavior of CoCrMo on the other hand was not affected by the mechanical surface treatments.

6.
Biomed Res Int ; 2019: 7132494, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31179332

RESUMEN

BACKGROUND: Mutations of GDAP1 gene cause autosomal dominant and autosomal recessive Charcot-Marie-Tooth (CMT) disease and over 80 different mutations have been identified so far. This study analyzed the clinical and genetic characteristics of a Vietnamese CMT family that was affected by a novel GDAP1 mutation. METHODS: We present three children of a family with progressive weakness, mild sensory loss, and absent tendon reflexes. Electrodiagnostic analyses displayed an axonal type of neuropathy in affected patients. Sequencing of GDAP1 gene was requested for all members of the family. RESULTS: All affected individuals manifested identical clinical symptoms of motor and sensory impairments within the first three years of life, and nerve conduction study indicated the axonal degeneration. A homozygous GDAP1 variant (c.667_671dup) was found in the three affected children as recessive inheritance pattern. The mutation leads to a premature termination codon that shortens GDAP1 protein (p.Gln224Hisfs∗37). Further testing showed heterozygous c.667_671dup variant in the parents. DISCUSSION: Our study expands the mutational spectrum of GDAP1-related CMT disease with the new and unreported GDAP1 variant. Alterations in GDAP1 gene should be evaluated as CMT causing variants in the Vietnamese population, predominantly axonal form of neuropathy in CMT disease.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Mutación , Proteínas del Tejido Nervioso/genética , Adolescente , Pueblo Asiatico , Enfermedad de Charcot-Marie-Tooth/fisiopatología , Niño , Preescolar , Exones , Familia , Femenino , Genes Recesivos , Homocigoto , Humanos , Masculino , Persona de Mediana Edad , Atrofia Muscular/genética , Atrofia Muscular/fisiopatología , Linaje , Fenotipo , Análisis de Secuencia de ADN
7.
Sci Rep ; 5: 15253, 2015 Oct 20.
Artículo en Inglés | MEDLINE | ID: mdl-26482532

RESUMEN

The conversion of the prion protein (PrP(C)) into prions plays a key role in transmissible spongiform encephalopathies. Despite the importance for pathogenesis, the mechanism of prion formation has escaped detailed characterization due to the insoluble nature of prions. PrP(C) interacts with copper through octarepeat and non-octarepeat binding sites. Copper coordination to the non-octarepeat region has garnered interest due to the possibility that this interaction may impact prion conversion. We used X-ray absorption spectroscopy to study copper coordination at pH 5.5 and 7.0 in human PrP(C) constructs, either wild-type (WT) or carrying pathological mutations. We show that mutations and pH cause modifications of copper coordination in the non-octarepeat region. In the WT at pH 5.5, copper is anchored to His96 and His111, while at pH 7 it is coordinated by His111. Pathological point mutations alter the copper coordination at acidic conditions where the metal is anchored to His111. By using in vitro approaches, cell-based and computational techniques, we propose a model whereby PrP(C) coordinating copper with one His in the non-octarepeat region converts to prions at acidic condition. Thus, the non-octarepeat region may act as the long-sought-after prion switch, critical for disease onset and propagation.


Asunto(s)
Sitios de Unión , Cobre/química , Priones/química , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Línea Celular Tumoral , Secuencia Conservada , Cobre/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Modelos Moleculares , Datos de Secuencia Molecular , Mutación , Priones/genética , Priones/metabolismo , Unión Proteica , Conformación Proteica , Estructura Terciaria de Proteína , Transporte de Proteínas , Secuencias Repetitivas de Ácidos Nucleicos , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA