Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Molecules ; 26(12)2021 Jun 10.
Artículo en Inglés | MEDLINE | ID: mdl-34200764

RESUMEN

The cyclooxygenase-2 (COX-2) enzyme is an important target for drug discovery and development of novel anti-inflammatory agents. Selective COX-2 inhibitors have the advantage of reduced side-effects, which result from COX-1 inhibition that is usually observed with nonselective COX inhibitors. In this study, the design and synthesis of a new series of 7-methoxy indolizines as bioisostere indomethacin analogues (5a-e) were carried out and evaluated for COX-2 enzyme inhibition. All the compounds showed activity in micromolar ranges, and the compound diethyl 3-(4-cyanobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5a) emerged as a promising COX-2 inhibitor with an IC50 of 5.84 µM, as compared to indomethacin (IC50 = 6.84 µM). The molecular modeling study of indolizines indicated that hydrophobic interactions were the major contribution to COX-2 inhibition. The title compound diethyl 3-(4-bromobenzoyl)-7-methoxyindolizine-1,2-dicarboxylate (5c) was subjected for single-crystal X-ray studies, Hirshfeld surface analysis, and energy framework calculations. The X-ray diffraction analysis showed that the molecule (5c) crystallizes in the monoclinic crystal system with space group P 21/n with a = 12.0497(6)Å, b = 17.8324(10)Å, c = 19.6052(11)Å, α = 90.000°, ß = 100.372(1)°, γ = 90.000°, and V = 4143.8(4)Å3. In addition, with the help of Crystal Explorer software program using the B3LYP/6-31G(d, p) basis set, the theoretical calculation of the interaction and graphical representation of energy value was measured in the form of the energy framework in terms of coulombic, dispersion, and total energy.


Asunto(s)
Inhibidores de la Ciclooxigenasa 2/química , Indolizinas/química , Antiinflamatorios/química , Cristalografía por Rayos X/métodos , Ciclooxigenasa 2/metabolismo , Humanos , Interacciones Hidrofóbicas e Hidrofílicas , Indometacina/química , Relación Estructura-Actividad
2.
Int J Biol Macromol ; 274(Pt 2): 133285, 2024 Jun 24.
Artículo en Inglés | MEDLINE | ID: mdl-38925196

RESUMEN

In the current study, two sets of compounds: (E)-1-(2-(4-substitutedphenyl)-2-oxoethyl)-4-((hydroxyimino)methyl)pyridinium derivatives (3a-3e); and (E)-3-(substitutedbenzoyl)-7-((hydroxyimino)methyl)-2-substitutedindolizine-1-carboxylate derivatives (5a-5j), were synthesized and biologically evaluated against two strains of Mycobacterial tuberculosis (ATCC 25177) and multi-drug resistant (MDR) strains. Further, they were also tested in vitro against the mycobacterial InhA enzyme. The in vitro results showed excellent inhibitory activities against both MTB strains and compounds 5a-5j were found to be more potent, and their MIC values ranged from 5 to 16 µg/mL and 16-64 µg/mL against the M. tuberculosis (ATCC 25177) and MDR-TB strains, respectively. Compound 5h with phenyl and 4-fluorobenzoyl groups attached to the 2- and 3-position of the indolizine core was found to be the most active against both strains with MIC values of 5 µg/mL and 16 µg/mL, respectively. On the other hand, the two sets of compounds showed weak to moderate inhibition of InhA enzyme activity that ranged from 5 to 17 % and 10-52 %, respectively, with compound 5f containing 4-fluoro benzoyl group attached to the 3-position of the indolizine core being the most active (52 % inhibition of InhA). Unfortunately, there was no clear correlation between the InhA inhibitory activity and MIC values of the tested compounds, indicating the probability that they might have different modes of action other than InhA inhibition. Therefore, a computational investigation was conducted by employing molecular docking to identify their putative drug target(s) and, consequently, understand their mechanism of action. A panel of 20 essential mycobacterial enzymes was investigated, of which ß-ketoacyl acyl carrier protein synthase I (KasA) and pyridoxal-5'-phosphate (PLP)-dependent aminotransferase (BioA) enzymes were revealed as putative targets for compounds 3a-3e and 5a-5j, respectively. Moreover, in silico ADMET predictions showed adequate properties for these compounds, making them promising leads worthy of further optimization.

3.
Acta Pharm ; 73(1): 1-27, 2023 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-36692468

RESUMEN

Malaria is a serious worldwide medical issue that results in substantial annual death and morbidity. The availability of treatment alternatives is limited, and the rise of resistant parasite types has posed a significant challenge to malaria treatment. To prevent a public health disaster, novel antimalarial agents with single-dosage therapies, extensive curative capability, and new mechanisms are urgently needed. There are several approaches to developing antimalarial drugs, ranging from alterations of current drugs to the creation of new compounds with specific targeting abilities. The availability of multiple genomic techniques, as well as recent advancements in parasite biology, provides a varied collection of possible targets for the development of novel treatments. A number of promising pharmacological interference targets have been uncovered in modern times. As a result, our review concentrates on the most current scientific and technical progress in the innovation of new antimalarial medications. The protein kinases, choline transport inhibitors, dihydroorotate dehydrogenase inhibitors, isoprenoid biosynthesis inhibitors, and enzymes involved in the metabolism of lipids and replication of deoxyribonucleic acid, are among the most fascinating antimalarial target proteins presently being investigated. The new cellular targets and drugs which can inhibit malaria and their development techniques are summarised in this study.


Asunto(s)
Antimaláricos , Malaria , Humanos , Antimaláricos/farmacología , Antimaláricos/uso terapéutico , Malaria/tratamiento farmacológico
4.
Curr Med Chem ; 28(2): 284-307, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-32900341

RESUMEN

The COVID-19 pandemic continues to wreak havoc worldwide due to the lack of risk assessment, rapid spreading ability, and propensity to precipitate severe disease in comorbid conditions. In an attempt to fulfill the demand for prophylactic and treatment measures to intercept the ongoing outbreak, the drug development process is facing several obstacles and renaissance in clinical trials, including vaccines, antivirals, immunomodulators, plasma therapy, and traditional medicines. This review outlines the overview of SARS-CoV-2 infection, significant recent findings, and ongoing clinical trials concerning current and future therapeutic interventions for the management of advancing pandemic of the century.


Asunto(s)
Antivirales/uso terapéutico , Tratamiento Farmacológico de COVID-19 , COVID-19/terapia , Vacunas contra la COVID-19 , Ensayos Clínicos como Asunto , Humanos , Inmunización Pasiva , Factores Inmunológicos/uso terapéutico , Medicina Tradicional , Pandemias , Sueroterapia para COVID-19
5.
Tuberculosis (Edinb) ; 125: 101989, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32957054

RESUMEN

Tuberculosis (TB) is a communicable airborne infectious disease caused by the Mycobacterium tuberculosis (MTB) that primarily affects the lungs, and can disseminate to other parts of the body. MTB is one of the most dangerous pathogens, killing about 1.4 million people annually worldwide. Although the standard treatment of TB is comprised of four anti-TB drugs, the emergence of multidrug-resistant (MDR) and extensive drug-resistant (XDR) strains in the recent past and associated side effects have affected the tailor-made regimens. Notably, existing therapies approved by the World Health Organisation (WHO) can only treat less than 50% of drug-resistant TB. Therefore, an expeditious pace in the TB research is highly needed in search of effective, affordable, least toxic novel drugs with shorter regimens to reach the goals viz. 2020 milestones End TB strategy set by the WHO. Currently, twenty-three drug-like molecules are under investigation in different stages of clinical trials. These newer agents are expected to be effective against the resistant strains. This article summarizes the properties, merits, demerits, and the probability of their success as novel potential therapeutic agents.


Asunto(s)
Antituberculosos/uso terapéutico , Diseño de Fármacos , Mycobacterium tuberculosis/efectos de los fármacos , Tuberculosis Resistente a Múltiples Medicamentos/tratamiento farmacológico , Humanos , Tuberculosis Resistente a Múltiples Medicamentos/microbiología
6.
Antibiotics (Basel) ; 9(5)2020 May 07.
Artículo en Inglés | MEDLINE | ID: mdl-32392709

RESUMEN

A series of ethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-3-carboxylates 4a-f and dimethyl 1-(substituted benzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylates 4g-k have been synthesized and evaluated for their anti-tubercular (TB) activities against H37Rv (American Type Culture Collection (ATCC) strain 25177) and multidrug-resistant (MDR) strains of Mycobacterium tuberculosis by resazurin microplate assay (REMA). Molecular target identification for these compounds was also carried out by a computational approach. All test compounds exhibited anti-tuberculosis (TB) activity in the range of 8-128 µg/mL against H37Rv. The test compound dimethyl-1-(4-fluorobenzoyl)-5-methylpyrrolo[1,2-a]quinoline-2,3-dicarboxylate 4j emerged as the most promising anti-TB agent against H37Rv and multidrug-resistant strains of Mycobacterium tuberculosis at 8 and 16 µg/mL, respectively. In silico evaluation of pharmacokinetic properties indicated overall drug-likeness for most of the compounds. Docking studies were also carried out to investigate the binding affinities as well as interactions of these compounds with the target proteins.

7.
Curr Pharm Des ; 25(26): 2792-2807, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31333097

RESUMEN

BACKGROUND: Adenosine mediates various physiological and pathological conditions by acting on its four P1 receptors (A1, A2A, A2B and A3 receptors). Omnipresence of P1 receptors and their activation, exert a wide range of biological activities. Thus, its modulation is implicated in various disorders like Parkinson's disease, asthma, cardiovascular disorders, cancer etc. Hence these receptors have become an interesting target for the researchers to develop potential therapeutic agents. Number of molecules were designed and developed in the past few years and evaluated for their efficacy in various disease conditions. OBJECTIVE: The main objective is to provide an overview of new chemical entities which have crossed preclinical studies and reached clinical trials stage following their current status and future prospective. METHODS: In this review we discuss current status of the drug candidates which have undergone clinical trials and their prospects. RESULTS: Many chemical entities targeting various subtypes of P1 receptors are patented; twenty of them have crossed preclinical studies and reached clinical trials stage. Two of them viz adenosine and regadenoson are approved by the Food and Drug Administration. CONCLUSION: This review is an attempt to highlight the current status, progress and probable future of P1 receptor ligands which are under clinical trials as promising novel therapeutic agents and the direction in which research should proceed with a view to come out with novel therapeutic agents.


Asunto(s)
Agonistas del Receptor Purinérgico P1/uso terapéutico , Antagonistas de Receptores Purinérgicos P1/uso terapéutico , Adenosina/uso terapéutico , Asma/tratamiento farmacológico , Enfermedades Cardiovasculares/tratamiento farmacológico , Ensayos Clínicos como Asunto , Humanos , Ligandos , Neoplasias/tratamiento farmacológico , Enfermedad de Parkinson/tratamiento farmacológico , Purinas/uso terapéutico , Pirazoles/uso terapéutico , Receptores Purinérgicos P1
8.
Chem Biol Drug Des ; 94(2): 1568-1573, 2019 08.
Artículo en Inglés | MEDLINE | ID: mdl-30985956

RESUMEN

A series of novel 7-amino-5-oxo-2-substituted-aryl/hetero-aryl-5,8-dihydro[1,2,4]triazolo[1,5-a]pyridine-6-carbonitriles (4a-4t) was synthesized, characterized and evaluated for their binding affinity and selectivity towards hA1 , hA2A , hA2B and hA3 adenosine receptors (ARs). Compound 4a with a phenyl ring at 2-position of the triazolo moiety of the scaffold showed high affinity and selectivity for hA1 AR (Ki hA1  = 0.076 µM, hA2A  = 25.6 µM and hA3  > 100 µM). Introduction of various electron donating and withdrawing groups at different positions of the phenyl ring resulted in drastic reduction in affinity and selectivity towards all the ARs, except compound 4b with a 4-hydroxyphenyl group at 2-position. Interestingly, the replacement of the phenyl ring with a smaller heterocyclic thiophene ring (π excessive system) resulted in further improvement of affinity for hA1 AR of compound 4t (Ki hA1  = 0.051 µM, hA2A  = 9.01 µM and hA3  > 13.9 µM) while retaining the significant selectivity against all other AR subtypes similar to compound 4a. The encouraging results for compounds 4a and 4t indicate that substitution at 2-position of the scaffold with π-excessive systems other than thiophene may lead to even more potent and selective hA1 AR antagonists.


Asunto(s)
Agonistas del Receptor de Adenosina A2 , Agonistas del Receptor de Adenosina A3 , Simulación del Acoplamiento Molecular , Piridinas , Receptor de Adenosina A2A/química , Receptor de Adenosina A3/química , Agonistas del Receptor de Adenosina A2/síntesis química , Agonistas del Receptor de Adenosina A2/química , Agonistas del Receptor de Adenosina A3/síntesis química , Agonistas del Receptor de Adenosina A3/química , Animales , Células CHO , Cricetulus , Humanos , Piridinas/síntesis química , Piridinas/química , Relación Estructura-Actividad
9.
Open Med Chem J ; 2: 101-11, 2008 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-19662150

RESUMEN

A series of alkyl- and aryl-1,2,4-triazino[4,3-c]quinazolines (5a-h and 8a-h) were synthesized and characterized. The title compounds were evaluated for their in vivo bronchodilator activity on guinea pigs. All the test compounds exhibited good protection against histamine-induced bronchospasm. The structure-activity relationships based on the results obtained for these series were studied. Incorporation of an aryl ring with halo substitution to the theophylline bioisostere increases its potency. Among the compounds tested, 5b was found to be the most potent with 88.7% protection against histamine-induced bronchospasm compared to the standard compound aminophylline (87.8%).

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA