RESUMEN
Post-translational modification of proteins with carbohydrates shapes their localization and function. This SnapShot presents the core pathways from different organisms that install these complex and highly variable structures.
Asunto(s)
Eucariontes/metabolismo , Glicosilación , Animales , Evolución Biológica , Eucariontes/clasificación , Eucariontes/citología , Humanos , Polisacáridos/metabolismoRESUMEN
Filamentous fungi secrete protein with a very high efficiency, and this potential can be exploited advantageously to produce therapeutic proteins at low costs. A significant barrier to this goal is posed by the fact that fungal N-glycosylation varies substantially from that of humans. Inappropriate N-glycosylation of therapeutics results in reduced product quality, including poor efficacy, decreased serum half-life, and undesirable immune reactions. One solution to this problem is to reprogram the glycosylation pathway of filamentous fungi to decorate proteins with glycans that match, or can be remodeled into, those that are accepted by humans. In yeast, deletion of ALG3 leads to the accumulation of Man5GlcNAc2 glycan structures that can act as a precursor for remodeling. However, in Aspergilli, deletion of the ALG3 homolog algC leads to an N-glycan pool where the majority of the structures contain more hexose residues than the Man3-5GlcNAc2 species that can serve as substrates for humanized glycan structures. Hence, additional strain optimization is required. In this report, we have used gene deletions in combination with enzymatic and chemical glycan treatments to investigate N-glycosylation in the model fungus Aspergillus nidulans. In vitro analyses showed that only some of the N-glycan structures produced by a mutant A. nidulans strain, which is devoid of any of the known ER mannose transferases, can be trimmed into desirable Man3GlcNAc2 glycan structures, as substantial amounts of glycan structures appear to be capped by glucose residues. In agreement with this view, deletion of the ALG6 homolog algF, which encodes the putative α-1,3- glucosyltransferase that adds the first glucose residue to the growing ER glycan structure, dramatically reduces the amounts of Hex6-7HexNAc2 structures. Similarly, these structures are also sensitive to overexpression of the genes encoding the heterodimeric α-glucosidase II complex. Without the glucose caps, a new set of large N-glycan structures was formed. Formation of this set is mostly, perhaps entirely, due to mannosylation, as overexpression of the gene encoding mannosidase activity led to their elimination. Based on our new insights into the N-glycan processing in A. nidulans, an A. nidulans mutant strain was constructed in which more than 70% of the glycoforms appear to be Man3-5GlcNAc2 species, which may serve as precursors for further engineering in order to create more complex human-like N-glycan structures.
Asunto(s)
Aspergillus nidulans , Glicosilación , Polisacáridos , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Glucosiltransferasas , Humanos , Manosiltransferasas/metabolismo , Proteínas de la Membrana , Microorganismos Modificados Genéticamente , Polisacáridos/genéticaRESUMEN
Omics-based tools were coupled with bioinformatics for a systeomics analysis of two biopharma cell types: Chinese hamster ovary (M-CHO and CHO-K1) and SP2/0. Exponential and stationary phase samples revealed more than 10,000 transcripts and 6000 proteins across these two manufacturing cell lines. A statistical comparison of transcriptomics and proteomics data identified downregulated genes involved in protein folding, protein synthesis and protein metabolism, including PPIA-cyclophilin A, HSPD1, and EIF3K, in M-CHO compared to SP2/0 while cell cycle and actin cytoskeleton genes were reduced in SP2/0. KEGG pathway comparisons revealed glycerolipids, glycosphingolipids, ABC transporters, calcium signaling, cell adhesion, and secretion pathways depleted in M-CHO while retinol metabolism was upregulated. KEGG and IPA also indicated apoptosis, RNA degradation, and proteosomes enriched in CHO stationary phase. Alternatively, gene ontology analysis revealed an underrepresentation in ion and potassium channel activities, membrane proteins, and secretory granules including Stxbpt2, Syt1, Syt9, and Cma1 proteins in M-CHO. Additional enrichment strategies involving ultracentrifugation, biotinylation, and hydrazide chemistry identified over 4000 potential CHO membrane and secretory proteins, yet many secretory and membrane proteins were still depleted. This systeomics pipeline has revealed bottlenecks and potential opportunities for cell line engineering in CHO and SP2/0 to improve their production capabilities.
Asunto(s)
Proteómica , Vías Secretoras , Animales , Células CHO , Cricetinae , Cricetulus , Proteínas de la Membrana/metabolismo , Vías Secretoras/genéticaRESUMEN
Benchmarks for protective immunity from infection or severe disease after SARS-CoV-2 vaccination are still being defined. Here, we characterized virus neutralizing and ELISA antibody levels, cellular immune responses, and viral variants in 4 separate groups: healthy controls (HCs) weeks (early) or months (late) following vaccination in comparison with symptomatic patients with SARS-CoV-2 after partial or full mRNA vaccination. During the period of the study, most symptomatic breakthrough infections were caused by the SARS-CoV-2 Alpha variant. Neutralizing antibody levels in the HCs were sustained over time against the vaccine parent virus but decreased against the Alpha variant, whereas IgG titers and T cell responses against the parent virus and Alpha variant declined over time. Both partially and fully vaccinated patients with symptomatic infections had lower virus neutralizing antibody levels against the parent virus than the HCs, similar IgG antibody titers, and similar virus-specific T cell responses measured by IFN-γ. Compared with HCs, neutralization activity against the Alpha variant was lower in the partially vaccinated infected patients and tended to be lower in the fully vaccinated infected patients. In this cohort of breakthrough infections, parent virus neutralization was the superior predictor of breakthrough infections with the Alpha variant of SARS-CoV-2.
Asunto(s)
Inmunidad Adaptativa , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/farmacología , COVID-19/virología , SARS-CoV-2/inmunología , Vacunación/métodos , Vacunas Sintéticas/farmacología , Vacunas de ARNm/farmacología , Adulto , Anciano , COVID-19/epidemiología , COVID-19/prevención & control , Femenino , Estudios de Seguimiento , Humanos , Masculino , Persona de Mediana Edad , Pandemias , Vigilancia de la Población , Estudios Retrospectivos , Estados Unidos/epidemiología , Adulto JovenRESUMEN
Engineered Chinese hamster ovary (CHO) cells are the most widely utilized cell line for protein-based therapeutics production at industrial scales. Process development strategies which improve production capacity and quality are often implemented without an understanding of underlying intracellular changes. Intracellular redox conditions drive reactions in pathways critical to biologics production, including bioenergetic and biosynthetic pathways, necessitating methods to quantify redox-related changes. Advances in methods for analytical redox quantification presented here, including bioreactor probes, redox-targeted proteomics, genetically encoded redox-sensitive fluorescent proteins, and biochemical assays, are creating new opportunities to characterize the effects of redox in biologics production. Implementing these methods will lead to enhanced media formulations, improved bioprocess strategies, and new cell line engineering targets and ultimately develop redox into an optimizable bioprocess parameter to improve the yield and quality of these lifesaving medicines.
Asunto(s)
Ingeniería Celular , Proteómica , Animales , Células CHO , Cricetinae , Cricetulus , Oxidación-ReducciónRESUMEN
One major challenge observed for the expression of therapeutic bispecific antibodies (BisAbs) is high product aggregates. Aggregates increase the risk of immune responses in patients and therefore must be removed at the expense of purification yields. BisAbs contain engineered disulfide bonds, which have been demonstrated to form product aggregates, if mispaired. However, the underlying intracellular mechanisms leading to product aggregate formation remain unknown. We demonstrate that impaired glutathione regulation underlies BisAb aggregation formation in a CHO cell process. Aggregate formation was evaluated for the same clonal CHO cell line producing a BisAb using fed-batch and perfusion processes. The perfusion process produced significantly lower BisAb aggregates compared to the fed-batch process. Perfusion bioreactors attenuated mitochondrial dysfunction and ER stress resulting in a favorable intracellular redox environment as indicated by improved reduced to oxidized glutathione ratio. Conversely, mitochondrial dysfunction-induced glutathione oxidation and ER stress disrupted the intracellular redox homeostasis, leading to product aggregation in the fed-batch process. Combined, our results demonstrate that mitochondrial dysfunction and ER stress impaired glutathione regulation leading to higher product aggregates in the fed-batch process. This is the first study to utilize perfusion bioreactors as a tool to demonstrate the intracellular mechanisms underlying product aggregation formation.
Asunto(s)
Anticuerpos Biespecíficos , Técnicas de Cultivo Celular por Lotes/métodos , Estrés del Retículo Endoplásmico , Glutatión/metabolismo , Mitocondrias/fisiología , Perfusión/métodos , Agregado de Proteínas , Animales , Anticuerpos Biespecíficos/efectos adversos , Anticuerpos Biespecíficos/inmunología , Anticuerpos Biespecíficos/metabolismo , Reactores Biológicos , Células CHO , Cricetulus , Oxidación-Reducción , Agregado de Proteínas/inmunologíaRESUMEN
Regulatory bodies worldwide consider N-glycosylation to be a critical quality attribute for immunoglobulin G (IgG) and IgG-like therapeutics. This consideration is due to the importance of posttranslational modifications in determining the efficacy, safety, and pharmacokinetic properties of biologics. Given its critical role in protein therapeutic production, we review N-glycosylation beginning with an overview of the myriad interactions of N-glycans with other biological factors. We examine the mechanism and drivers for N-glycosylation during biotherapeutic production and the several competing factors that impact glycan formation, including the abundance of precursor nucleotide sugars, transporters, glycosidases, glycosyltransferases, and process conditions. We explore the role of these factors with a focus on the analytical approaches used to characterize glycosylation and associated processes, followed by the current state of advanced glycosylation modeling techniques. This combination of disciplines allows for a deeper understanding of N-glycosylation and will lead to more rational glycan control.
Asunto(s)
Inmunoglobulina G/metabolismo , Proteínas Recombinantes/biosíntesis , Animales , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/genética , Anticuerpos Monoclonales/metabolismo , Línea Celular , Retículo Endoplásmico/metabolismo , Glicosilación , Aparato de Golgi/metabolismo , Humanos , Inmunoglobulina G/química , Inmunoglobulina G/genética , Proteínas Recombinantes/química , Proteínas Recombinantes/genéticaRESUMEN
Chinese hamster ovary (CHO) cells are the predominant production vehicle for biotherapeutics. Quantitative proteomics data were obtained from two CHO cell lines (CHO-S and CHO DG44) and compared with seven Chinese hamster (Cricetulus griseus) tissues (brain, heart, kidney, liver, lung, ovary and spleen) by tandem mass tag (TMT) labeling followed by mass spectrometry, providing a comprehensive hamster tissue and cell line proteomics atlas. Of the 8470 unique proteins identified, high similarity was observed between CHO-S and CHO DG44 and included increases in proteins involved in DNA replication, cell cycle, RNA processing, and chromosome processing. Alternatively, gene ontology and pathway analysis in tissues indicated increased protein intensities related to important tissue functionalities. Proteins enriched in the brain included those involved in acidic amino acid metabolism, Golgi apparatus, and ion and phospholipid transport. The lung showed enrichment in proteins involved in BCAA catabolism, ROS metabolism, vesicle trafficking, and lipid synthesis while the ovary exhibited enrichments in extracellular matrix and adhesion proteins. The heart proteome included vasoconstriction, complement activation, and lipoprotein metabolism enrichments. These detailed comparisons of CHO cell lines and hamster tissues will enhance understanding of the relationship between proteins and tissue function and pinpoint potential pathways of biotechnological relevance for future cell engineering.
Asunto(s)
Células CHO/metabolismo , Cricetulus/metabolismo , Animales , Encéfalo/metabolismo , Ciclo Celular , Cromosomas de los Mamíferos/metabolismo , Replicación del ADN , Femenino , Riñón/metabolismo , Pulmón/metabolismo , Miocardio/metabolismo , Ovario/metabolismo , Proteínas/metabolismo , Proteómica , Bazo/metabolismo , Espectrometría de Masas en TándemRESUMEN
The commercial production of monoclonal antibodies (mAbs) has revolutionized the treatment of many diseases, including cancer, multiple sclerosis, and rheumatoid arthritis. These biotherapeutics have the potential to generate a global annual revenue of more than US$150 billion. Two cell hosts are predominantly utilized to produce these mAbs: Chinese hamster ovary (CHO) cells and murine myeloma cells (NS0). By 2017, nearly one-quarter of all approved mAbs in the market were produced using the NS0 host cell line, and around two-thirds were produced in CHO cells. Several different expression platforms are available: CHO-GS (glutamine synthetase), CHO-DHFR (dihydrofolate reductase), NS0, and GS-NS0, which have been characterized with respect to cell line and process development. Even though the major components of the cell culture media are common for both CHO and NS0 cells, specific growth media have been modified based on individual cellular requirements, such as cholesterol for NS0 cells. Additionally, understanding genomic and metabolic differences between the two cell hosts from an 'omics perspective has created a reference for media composition and antibody quality improvements.
Asunto(s)
Anticuerpos Monoclonales/aislamiento & purificación , Células CHO/metabolismo , Técnicas de Cultivo de Célula/métodos , Medios de Cultivo/química , Animales , Línea Celular Tumoral , Colesterol/metabolismo , Cricetulus , Medios de Cultivo/metabolismo , Glutamato-Amoníaco Ligasa/metabolismo , Ratones , Proteínas Recombinantes/aislamiento & purificación , Tetrahidrofolato Deshidrogenasa/metabolismoRESUMEN
Cell-free protein synthesis has emerged as a powerful approach for expanding the range of genetically encoded chemistry into proteins. Unfortunately, efforts to site-specifically incorporate multiple non-canonical amino acids into proteins using crude extract-based cell-free systems have been limited by release factor 1 competition. Here we address this limitation by establishing a bacterial cell-free protein synthesis platform based on genomically recoded Escherichia coli lacking release factor 1. This platform was developed by exploiting multiplex genome engineering to enhance extract performance by functionally inactivating negative effectors. Our most productive cell extracts enabled synthesis of 1,780 ± 30 mg/L superfolder green fluorescent protein. Using an optimized platform, we demonstrated the ability to introduce 40 identical p-acetyl-L-phenylalanine residues site specifically into an elastin-like polypeptide with high accuracy of incorporation ( ≥ 98%) and yield (96 ± 3 mg/L). We expect this cell-free platform to facilitate fundamental understanding and enable manufacturing paradigms for proteins with new and diverse chemistries.
Asunto(s)
Aminoácidos/química , Proteínas de Escherichia coli/química , Escherichia coli/metabolismo , Factores de Terminación de Péptidos/química , Sistema Libre de Células , Codón , Proteínas de Escherichia coli/genética , Ingeniería Genética , Genoma Bacteriano , Proteínas Fluorescentes Verdes/metabolismo , Espectrometría de Masas , Mutación , Factores de Terminación de Péptidos/genética , Péptidos/metabolismo , Fenilalanina/metabolismo , Plásmidos/metabolismo , Biosíntesis de ProteínasRESUMEN
Chinese Hamster Ovary (CHO) cells are routinely optimized to stably express monoclonal antibodies (mAbs) at high titers. At the early stages of lead isolation and optimization, hundreds of sequences for the target protein of interest are screened. Typically, cell-based transient expression technology platforms are used for expression screening, but these can be time- and resource-intensive. Here, we have developed a cell-free protein synthesis (CFPS) platform utilizing a commercially available CHO extract for the rapid in vitro synthesis of active, aglycosylated mAbs. Specifically, we optimized reaction conditions to maximize protein yields, established an oxidizing environment to enable disulfide bond formation, and demonstrated the importance of temporal addition of heavy chain and light chain plasmids for intact mAb production. Using our optimized platform, we demonstrate for the first time to our knowledge the cell-free synthesis of biologically active, intact mAb at >100 mg/L using a eukaryotic-based extract. We then explored the utility of our system as a tool for ranking yields of candidate antibodies. Unlike stable or transient transfection-based screening, which requires a minimum of 7 days for setup and execution, results using our CHO-based CFPS platform are attained within 2 days and it is well-suited for automation. Further development would provide a tool for rapid, high-throughput prediction of mAb expression ranking to accelerate design-build-test cycles required for antibody expression and engineering. Looking forward, the CHO-based CFPS platform could facilitate the synthesis of toxic proteins as well.