Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
PLoS Genet ; 12(7): e1006156, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27441836

RESUMEN

Recessive osteogenesis imperfecta (OI) is caused by defects in proteins involved in post-translational interactions with type I collagen. Recently, a novel form of moderately severe OI caused by null mutations in TMEM38B was identified. TMEM38B encodes the ER membrane monovalent cation channel, TRIC-B, proposed to counterbalance IP3R-mediated Ca2+ release from intracellular stores. The molecular mechanisms by which TMEM38B mutations cause OI are unknown. We identified 3 probands with recessive defects in TMEM38B. TRIC-B protein is undetectable in proband fibroblasts and osteoblasts, although reduced TMEM38B transcripts are present. TRIC-B deficiency causes impaired release of ER luminal Ca2+, associated with deficient store-operated calcium entry, although SERCA and IP3R have normal stability. Notably, steady state ER Ca2+ is unchanged in TRIC-B deficiency, supporting a role for TRIC-B in the kinetics of ER calcium depletion and recovery. The disturbed Ca2+ flux causes ER stress and increased BiP, and dysregulates synthesis of proband type I collagen at multiple steps. Collagen helical lysine hydroxylation is reduced, while telopeptide hydroxylation is increased, despite increased LH1 and decreased Ca2+-dependent FKBP65, respectively. Although PDI levels are maintained, procollagen chain assembly is delayed in proband cells. The resulting misfolded collagen is substantially retained in TRIC-B null cells, consistent with a 50-70% reduction in secreted collagen. Lower-stability forms of collagen that elude proteasomal degradation are not incorporated into extracellular matrix, which contains only normal stability collagen, resulting in matrix insufficiency. These data support a role for TRIC-B in intracellular Ca2+ homeostasis, and demonstrate that absence of TMEM38B causes OI by dysregulation of calcium flux kinetics in the ER, impacting multiple collagen-specific chaperones and modifying enzymes.


Asunto(s)
Calcio/metabolismo , Colágeno Tipo I/biosíntesis , Canales Iónicos/genética , Osteogénesis Imperfecta/genética , Adulto , Señalización del Calcio , Colágeno Tipo I/metabolismo , Consanguinidad , Análisis Mutacional de ADN , Retículo Endoplásmico/metabolismo , Estrés del Retículo Endoplásmico , Femenino , Genes Recesivos , Estudios de Asociación Genética , Predisposición Genética a la Enfermedad , Homeostasis , Humanos , Lactante , Masculino , Linaje , Procesamiento Proteico-Postraduccional
2.
PLoS Genet ; 10(6): e1004465, 2014 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-24968150

RESUMEN

Cyclophilin B (CyPB), encoded by PPIB, is an ER-resident peptidyl-prolyl cis-trans isomerase (PPIase) that functions independently and as a component of the collagen prolyl 3-hydroxylation complex. CyPB is proposed to be the major PPIase catalyzing the rate-limiting step in collagen folding. Mutations in PPIB cause recessively inherited osteogenesis imperfecta type IX, a moderately severe to lethal bone dysplasia. To investigate the role of CyPB in collagen folding and post-translational modifications, we generated Ppib-/- mice that recapitulate the OI phenotype. Knock-out (KO) mice are small, with reduced femoral areal bone mineral density (aBMD), bone volume per total volume (BV/TV) and mechanical properties, as well as increased femoral brittleness. Ppib transcripts are absent in skin, fibroblasts, femora and calvarial osteoblasts, and CyPB is absent from KO osteoblasts and fibroblasts on western blots. Only residual (2-11%) collagen prolyl 3-hydroxylation is detectable in KO cells and tissues. Collagen folds more slowly in the absence of CyPB, supporting its rate-limiting role in folding. However, treatment of KO cells with cyclosporine A causes further delay in folding, indicating the potential existence of another collagen PPIase. We confirmed and extended the reported role of CyPB in supporting collagen lysyl hydroxylase (LH1) activity. Ppib-/- fibroblast and osteoblast collagen has normal total lysyl hydroxylation, while increased collagen diglycosylation is observed. Liquid chromatography/mass spectrometry (LC/MS) analysis of bone and osteoblast type I collagen revealed site-specific alterations of helical lysine hydroxylation, in particular, significantly reduced hydroxylation of helical crosslinking residue K87. Consequently, underhydroxylated forms of di- and trivalent crosslinks are strikingly increased in KO bone, leading to increased total crosslinks and decreased helical hydroxylysine- to lysine-derived crosslink ratios. The altered crosslink pattern was associated with decreased collagen deposition into matrix in culture, altered fibril structure in tissue, and reduced bone strength. These studies demonstrate novel consequences of the indirect regulatory effect of CyPB on collagen hydroxylation, impacting collagen glycosylation, crosslinking and fibrillogenesis, which contribute to maintaining bone mechanical properties.


Asunto(s)
Colágeno Tipo I/genética , Ciclofilinas/genética , Osteogénesis Imperfecta/genética , Procesamiento Proteico-Postraduccional/genética , Animales , Colágeno/química , Colágeno/genética , Colágeno/metabolismo , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Matriz Extracelular/genética , Matriz Extracelular/patología , Genes Recesivos , Humanos , Masculino , Glicoproteínas de Membrana/metabolismo , Ratones , Ratones Noqueados , Mutación , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Pliegue de Proteína
3.
Biochim Biophys Acta Mol Basis Dis ; 1865(9): 2210-2223, 2019 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-31055083

RESUMEN

Mutations in the type I procollagen C-propeptide occur in ~6.5% of Osteogenesis Imperfecta (OI) patients. They are of special interest because this region of procollagen is involved in α chain selection and folding, but is processed prior to fibril assembly and is absent in mature collagen fibrils in tissue. We investigated the consequences of seven COL1A1 C-propeptide mutations for collagen biochemistry in comparison to three probands with classical glycine substitutions in the collagen helix near the C-propeptide and a normal control. Procollagens with C-propeptide defects showed the expected delayed chain incorporation, slow folding and overmodification. Immunofluorescence microscopy indicated that procollagen with C-propeptide defects was mislocalized to the ER lumen, in contrast to the ER membrane localization of normal procollagen and procollagen with helical substitutions. Notably, pericellular processing of procollagen with C-propeptide mutations was defective, with accumulation of pC-collagen and/or reduced production of mature collagen. In vitro cleavage assays with BMP-1 ±â€¯PCPE-1 confirmed impaired C-propeptide processing of procollagens containing mutant proα1(I) chains. Overmodified collagens were incorporated into the matrix in culture. Dermal fibrils showed alterations in average diameter and diameter variability and bone fibrils were disorganized. Altered ER-localization and reduced pericellular processing of defective C-propeptides are expected to contribute to abnormal osteoblast differentiation and matrix function, respectively.


Asunto(s)
Colágeno Tipo I/genética , Retículo Endoplásmico/metabolismo , Procolágeno/metabolismo , Rastreo Diferencial de Calorimetría , Células Cultivadas , Colágeno Tipo I/química , Colágeno Tipo I/metabolismo , Cadena alfa 1 del Colágeno Tipo I , Fibroblastos/citología , Fibroblastos/metabolismo , Humanos , Microscopía Fluorescente , Mutación Missense , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Estructura Terciaria de Proteína
4.
Nat Commun ; 7: 11920, 2016 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-27380894

RESUMEN

Osteogenesis imperfecta (OI) is a collagen-related bone dysplasia. We identified an X-linked recessive form of OI caused by defects in MBTPS2, which encodes site-2 metalloprotease (S2P). MBTPS2 missense mutations in two independent kindreds with moderate/severe OI cause substitutions at highly conserved S2P residues. Mutant S2P has normal stability, but impaired functioning in regulated intramembrane proteolysis (RIP) of OASIS, ATF6 and SREBP transcription factors, consistent with decreased proband secretion of type I collagen. Further, hydroxylation of the collagen lysine residue (K87) critical for crosslinking is reduced in proband bone tissue, consistent with decreased lysyl hydroxylase 1 in proband osteoblasts. Reduced collagen crosslinks presumptively undermine bone strength. Also, proband osteoblasts have broadly defective differentiation. These mutations provide evidence that RIP plays a fundamental role in normal bone development.


Asunto(s)
Membrana Celular/patología , Colágeno Tipo I/genética , Metaloendopeptidasas/genética , Mutación Missense , Osteoblastos/metabolismo , Osteogénesis Imperfecta/genética , Factor de Transcripción Activador 6/genética , Factor de Transcripción Activador 6/metabolismo , Adulto , Anciano , Diferenciación Celular , Membrana Celular/metabolismo , Colágeno Tipo I/deficiencia , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/genética , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Regulación de la Expresión Génica , Genes Recesivos , Humanos , Hidroxilación , Masculino , Metaloendopeptidasas/metabolismo , Persona de Mediana Edad , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Osteoblastos/patología , Osteogénesis Imperfecta/metabolismo , Osteogénesis Imperfecta/patología , Linaje , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/genética , Procolágeno-Lisina 2-Oxoglutarato 5-Dioxigenasa/metabolismo , Proteolisis , Índice de Severidad de la Enfermedad , Proteínas de Unión a los Elementos Reguladores de Esteroles/genética , Proteínas de Unión a los Elementos Reguladores de Esteroles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA