Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nano Lett ; 18(9): 5821-5826, 2018 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-30169045

RESUMEN

Understanding the basic mechanisms of bacterial sexuality is an important topic in current microbiology and biotechnology. While classical methods used to study gene transfer provide information on whole cell populations, nanotechnologies offer new opportunities for analyzing the behavior of individual mating partners. We introduce an innovative atomic force microscopy (AFM) platform to study and mechanically control DNA transfer between single bacteria, focusing on the large conjugative pXO16 plasmid of the Gram-positive bacterium Bacillus thuringiensis. We demonstrate that the adhesion forces between single donor and recipient cells are very strong (∼2 nN). Using a mutant plasmid, we find that these high forces are mediated by a pXO16 aggregation locus that contains two large surface protein genes. Notably, we also show that AFM can be used to mechanically induce plasmid transfer between single partners, revealing that transfer is very fast (<15 min) and triggers major cell surface changes in transconjugant cells. We anticipate that the single-cell technology developed here will enable researchers to mechanically control gene transfer among a wide range of Gram-positive and Gram-negative bacterial species and to understand the molecular forces involved. Also, the method could be useful in nanomedicine for the design of antiadhesion compounds capable of preventing intimate cell-cell contacts, therefore providing a means to control the resistance and virulence of bacterial pathogens.

2.
Environ Microbiol ; 20(4): 1550-1561, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29488309

RESUMEN

The entomopathogenic Bacillus thuringiensis serovar israelensis displays peculiar conjugative transfer capabilities, accounted for by the large conjugative plasmid pXO16 (350 kb). The efficient and fast conjugative transfers are accompanied by a macroscopic aggregation of bacterial partners. Moreover, pXO16 has proven capable of effective mobilization and the retro-transfer of both mobilizable and 'non-mobilizable' plasmids. In this work, the aggregation phenomenon is shown to promote pXO16 transfer while not being mandatory for transfer. Transfer of pXO16 to B. thuringiensis recipient strains that do not display aggregation is observed as well, hence enlarging the previously defined host range. The use of variant calling analysis of transconjugants allowed for observation of up to 791 kb chromosomal regions mobilization. Previous analysis of pXO16 did not reveal any Type IV Secretion System (T4SS) homologs, which suggested the presence of an unusual conjugative system. A FtsK/SpOIIIE ATPase gene proved here to be necessary for conjugative transfer. Additionally, the analysis of natural restriction-modification systems in both conjugative partners gave credit to a ssDNA transfer mechanism. A 'transfer israelensis plasmid' (tip) region containing this ATPase gene was shown to code for other potential T4SS proteins, illustrating a conjugative system distantly related to the other known Gram-positive T4SSs.


Asunto(s)
Bacillus thuringiensis/genética , Conjugación Genética/genética , Plásmidos/genética , Sistemas de Secreción Tipo IV/genética , Adenosina Trifosfatasas/genética , ADN/genética
3.
Plasmid ; 91: 76-81, 2017 05.
Artículo en Inglés | MEDLINE | ID: mdl-28435006

RESUMEN

pXO16, a large plasmid originating from Bacillus thuringiensis serovar israelensis, displays unique conjugation capacities: besides efficient self-transfer, it is able to mobilize and retro-mobilize non-conjugative plasmids, including those missing an oriT and/or a mob gene, also known as "non-mobilizable" plasmids. In this paper, another peculiar transfer property of pXO16 is described. This element is indeed able to transfer chromosomal loci at frequencies of ca. 10-5-10-6 transconjugants/donor cell. Whereas most other chromosomal transfer systems occur via the integration of the conjugative elements into the chromosome prior to its transfer, pXO16 appears to transfer the chromosomal markers in the absence of physical integration, but rather through a "donation-type" mobilization.


Asunto(s)
Bacillus thuringiensis/genética , Conjugación Genética , Elementos Transponibles de ADN , ADN Bacteriano/genética , Transferencia de Gen Horizontal , Plásmidos/química , Bacillus thuringiensis/metabolismo , Mapeo Cromosómico , Cromosomas Bacterianos/química , Cromosomas Bacterianos/metabolismo , ADN Bacteriano/metabolismo , Sitios Genéticos , Marcadores Genéticos , Mutagénesis , Plásmidos/metabolismo
4.
Plasmid ; 80: 8-15, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25770691

RESUMEN

Bacillus thuringiensis strains usually harbor large sets of plasmids, some of which carrying the entomopathogenic δ-endotoxins. B. thuringiensis serovar israelensis, active on Dipteran larvae, carries the very large conjugative plasmid pXO16 (350 kb). pXO16 displays a macroscopic aggregation phenotype when liquid cultures of conjugative partners are mixed. Its conjugative apparatus is able of transferring itself and other non-conjugative and non-mobilizable plasmids in a fast and very efficient manner. Even though its conjugative kinetics and capabilities have been extensively studied, the genetic bases for this unique transfer system remain largely unknown. In this work, the sequence of pXO16 has been identified in the existing sequenced genome of B. thuringiensis sv. israelensis HD-789 as corresponding to the p01 plasmid. Despite pXO16 sequence being highly coding, few CDS possess homologs in the databases. However, potential regions responsible for the aggregation phenotype and the plasmid replication have been highlighted. The common orientation of all CDS and the presence of a high number of potential paralogs suggested a phage-like nature. Concerning conjugative functions, no significant type IV secretion system homologs have been found, indicating that pXO16 encodes an unforeseen conjugative system.


Asunto(s)
Bacillus thuringiensis/genética , Plásmidos/genética , Composición de Base , Secuencia de Bases , Conjugación Genética , Replicación del ADN , Anotación de Secuencia Molecular , Análisis de Secuencia de ADN
5.
FEMS Microbiol Rev ; 42(6): 829-856, 2018 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-30203090

RESUMEN

Bacillus thuringiensis is a well-known biopesticide that has been used for more than 80 years. This spore-forming bacterium belongs to the group of Bacillus cereus that also includes, among others, emetic and diarrheic pathotypes of B. cereus, the animal pathogen Bacillus anthracis and the psychrotolerant Bacillus weihenstephanensis. Bacillus thuringiensis is rather unique since it has adapted its lifestyle as an efficient pathogen of specific insect larvae. One of the peculiarities of B. thuringiensis strains is the extent of their extrachromosomal pool, with strains harbouring more than 10 distinct plasmid molecules. Among the numerous serovars of B. thuringiensis, 'israelensis' is certainly emblematic since its host spectrum is apparently restricted to dipteran insects like mosquitoes and black flies, vectors of human and animal diseases such as malaria, yellow fever, or river blindness. In this review, the putative role of the mobile gene pool of B. thuringiensis serovar israelensis in its pathogenicity and dedicated lifestyle is reviewed, with specific emphasis on the nature, diversity, and potential mobility of its constituents. Variations among the few related strains of B. thuringiensis serovar israelensis will also be reported and discussed in the scope of this specialised insect pathogen, whose lifestyle in the environment remains largely unknown.


Asunto(s)
Bacillus thuringiensis/genética , Secuencias Repetitivas Esparcidas/genética , Plásmidos/genética , Animales , Bacillus thuringiensis/patogenicidad , Variación Genética , Insectos/microbiología , Larva/microbiología , Especificidad de la Especie
6.
Res Microbiol ; 168(4): 319-330, 2017 May.
Artículo en Inglés | MEDLINE | ID: mdl-27793675

RESUMEN

Bacillus thuringiensis has long been recognized to carry numerous extrachromosomal molecules. Of particular interest are the strains belonging to the B. thuringiensis subsp. israelensis lineage, as they can harbor at least seven extrachromosomal molecules. One of these elements seems to be a cryptic molecule that may have been disregarded in strains considered plasmid-less. Therefore, this work focused on this cryptic molecule, named pBtic235. Using different approaches that included transposition-tagging, large plasmid gel electrophoresis and Southern blotting, conjugation and phage-induction experiments, in combination with bioinformatics analyses, it was found that pBtic235 is a hybrid molecule of 235,425 bp whose genome displays potential plasmid- and phage-like modules. The sequence of pBtic235 has been identified in all sequenced genomes of B. thuringiensis subsp. israelensis strains. Here, the pBtic235 sequence was considered identical to that of plasmid pBTHD789-2 from strain HD-789. Despite the fact that the pBtic235 genome possesses 240 putative CDSs, many of them have no homologs in the databases. However, CDSs coding for potential proteins involved in replication, genome packaging and virion structure, cell lysis, regulation of lytic-lysogenic cycles, metabolite transporters, stress and metal resistance, were identified. The candidate plasmidial prophage pBtic235 exemplifies the notable diversity of the extrachromosomal realm found in B. thuringiensis.


Asunto(s)
Bacillus thuringiensis/genética , Genoma Bacteriano/genética , Plásmidos/genética , Profagos/genética , Secuencia de Bases , Conjugación Genética/fisiología , Replicación del ADN/genética , Análisis de Secuencia de ADN
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA