Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Environ Manage ; 358: 120908, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631168

RESUMEN

The investigation of partial denitrification/anammox (PD/anammox) processes was conducted under autotrophic (N-S cycle) and mixotrophic (N-S-C cycle) conditions over 180 days. Key findings revealed the remarkable capability of SO42--dependent systems to produce NO2- effectively, supporting anaerobic NH4+ oxidation. Additionally, SO42- served as an additional electron acceptor in sulfate reduction ammonium oxidation (SRAO). Increasing influent SO42- concentrations notably improved ammonia utilization rates (AUR) and NH4+ and total nitrogen (TN) utilization efficiencies, peaking at 57% for SBR1 and nearly 100% for SBR2. Stoichiometric analysis showed a 7.5-fold increase in AUR (SRAO and anammox) in SBR1 following SO42- supplementation. However, the analysis for SBR2 indicated a shift towards SRAO and mixotrophic denitrification, with anammox disappearing entirely by the end of the study. Comparative assessments between SBR1 and SBR2 emphasized the impact of organic compounds (CH3COONa) on transformations within the N-S-C cycle. SBR1 performance primarily involved anammox, SRAO and other SO42- utilization pathways, with minimal S-dependent autotrophic denitrification (SDAD) involvement. In contrast, SBR2 performance encompassed SRAO, mixotrophic denitrification, and other pathways for SO42- production. The SRAO process involved two dominant genera, such as Candidatus Brocadia and PHOS-HE36.


Asunto(s)
Desnitrificación , Nitrógeno , Aguas Residuales , Nitrógeno/metabolismo , Aguas Residuales/química , Oxidación-Reducción , Amoníaco/metabolismo , Procesos Autotróficos , Eliminación de Residuos Líquidos/métodos , Compuestos de Amonio/metabolismo , Reactores Biológicos
2.
J Environ Manage ; 358: 120834, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38631170

RESUMEN

The organic matter (OM) and nitrogen in Fresh leachate (FL) from waste compression sites pose environmental and health risks. Even though the constructed wetland (CW) can efficiently remove these pollutants, the molecular-level transformations of dissolved OM (DOM) in FL remain uncertain. This study reports the molecular dynamics of DOM and nitrogen removal during FL treatment in CWs. Two lab-scale vertical-flow CW systems were employed: one using only sand as substrates (act as a control, CW-C) and the other employing an equal mixture of manganese ore powder and sand (experimental, CW-M). Over 488 days of operation, CW-M exhibited significantly higher removal rates for chemical oxygen demand (COD), ammonia nitrogen (NH4+-N), and dissolved organic matter (represented by dissolved organic carbon, DOC) at 98.2 ± 2.5%, 99.2 ± 1.4%, and 97.9 ± 1.9%, respectively, in contrast to CW-C (92.8 ± 6.8%, 77.1 ± 28.1%, and 74.7 ± 9.5%). The three-dimensional fluorescence excitation-emission matrix (3D-EEM) and Fourier transform ion cyclotron resonance mass spectrometry (FT-ICR MS) analyses unveiled that the influent DOM was predominantly composed of readily biodegradable protein-like substances with high carbon content and low unsaturation. Throughout treatment, it led to the degradation of low O/C and high H/C compounds, resulting in the formation of DOM with higher unsaturation and aromaticity, resembling humic-like substances. CW-M showcased a distinct DOM composition, characterized by lower carbon content yet higher unsaturation and aromaticity than CW-C. The study also identified the presence of Gammaproteobacteria, reported as Mn-oxidizing bacteria with significantly higher abundance in the upper and middle layers of CW-M, facilitating manganese cycling and improving DOM removal. Key pathways contributing to DOM removal encompassed adsorption, catalytic oxidation by manganese oxides, and microbial degradation. This study offers novel insights into DOM transformation and removal from FL during CW treatment, which will facilitate better design and enhanced performance.


Asunto(s)
Manganeso , Contaminantes Químicos del Agua , Humedales , Manganeso/química , Contaminantes Químicos del Agua/química , Nitrógeno/química , Análisis de la Demanda Biológica de Oxígeno
3.
J Environ Manage ; 370: 122497, 2024 Sep 14.
Artículo en Inglés | MEDLINE | ID: mdl-39278020

RESUMEN

The recycling of food waste (FW) through anaerobic fermentation into lactic acid (LA), with two isomers L-LA and D-LA, aligns with the principles of a bio-based circular economy. However, FW fermentation is often limited by competing pathways, acidification inhibition, and trace metals deficiency. This study investigates the introduction of landfill leachate, containing buffering agents (ammonia) and trace metals, into FW fermentation. Various dosages of landfill leachate, ranging from 90 (LN-90) to 450 mg/L (LN-450) based on inclusive ammonia calculation, were employed. Results showed that LA production peaked at 43.65 ± 0.57 g COD/L in LN-180 on day 6, with a high optical activity of L-LA at 92.40 ± 1.15 %. Fermentation pathway analysis revealed that landfill leachate amendment enhances hydrolysis (as evidenced by increased activity of amylase, α-glucosidase, and protease) and glycolysis (resulting in enhanced utilization of carbohydrates and glucose). The inclusive ammonia in leachate plays a crucial role as a buffer, maintaining optimal pH conditions (5-7), thereby reducing volatile fatty acid production and thus intensifying LA orientations. The increased activity of L-lactate dehydrogenase (L-LA generation) and decreased NAD-independent lactate dehydrogenase (LA consumption) in properly dosed leachate further explained the high accumulation of L-LA. Dominance of lactic acid bacteria, including Streptococcus, Enterococcus, Klebsiella, Bifidobacterium, Bavariicoccus, and Lacticaseibacillus, accounted for 91.08% (LN-90), while inhibitory effects were observed in LN-450 (4.45%). Functional gene analysis further supported the enhanced glycolysis, L-lactate dehydrogenase, and nitrogen assimilation. Finally, a network analysis indicates a beneficial effect on the genus Enterococcus and Klebsiella by landfill leachate addition. This study demonstrates the efficiency of utilizing landfill leachate to enhance LA recycling from FW fermentation, aligning with the concept of circular economy by transforming waste into valuable resources.

4.
J Environ Manage ; 354: 120414, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38412730

RESUMEN

Inadequate landfill management poses risks to the environment and human health, necessitating action. Poorly designed and operated landfills release harmful gases, contaminate water, and deplete resources. Aligning landfill management with the Sustainable Development Goals (SDGs) reveals its crucial role in achieving various targets. Urgent transformation of landfill practices is necessary to address challenges like climate change, carbon neutrality, food security, and resource recovery. The scientific community recognizes landfill management's impact on climate change, evidenced by in over 191 published articles (1998-2023). This article presents emerging solutions for sustainable landfill management, including physico-chemical, oxidation, and biological treatments. Each technology is evaluated for practical applications. The article emphasizes landfill management's global significance in pursuing carbon neutrality, prioritizing resource recovery over end-of-pipe treatments. It is important to note that minimizing water, chemical, and energy inputs in nutrient recovery is crucial for achieving carbon neutrality by 2050. Water reuse, energy recovery, and material selection during manufacturing are vital. The potential of water technologies for recovering macro-nutrients from landfill leachate is explored, considering feasibility factors. Integrated waste management approaches, such as recycling and composting, reduce waste and minimize environmental impact. It is conclusively evident that the water technologies not only facilitate the purification of leachate but also enable the recovery of valuable substances such as ammonium, heavy metals, nutrients, and salts. This recovery process holds economic benefits, while the conversion of CH4 and hydrogen into bioenergy and power generation through microbial fuel cells further enhances its potential. Future research should focus on sustainable and cost-effective treatment technologies for landfill leachate. Improving landfill management can mitigate the adverse environmental and health effects of inadequate waste disposal.


Asunto(s)
Eliminación de Residuos , Administración de Residuos , Contaminantes Químicos del Agua , Humanos , Contaminantes Químicos del Agua/química , Carbono , Instalaciones de Eliminación de Residuos , Agua , Residuos Sólidos
5.
Environ Res ; 236(Pt 1): 116711, 2023 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-37487927

RESUMEN

Sustainable water recycling and wastewater reuse are urgent nowadays considering water scarcity and increased water consumption through human activities. In 2015, United Nations Sustainable Development Goal 6 (UN SDG6) highlighted the necessity of recycling wastewater to guarantee water availability for individuals. Currently, wastewater irrigation (WWI) of crops and agricultural land appears essential. The present work overviews the quality of treated wastewater in terms of soil microbial activities, and discusses challenges and benefits of WWI in line with wastewater reuse in agriculture and aquaculture irrigation. Combined conventional-advanced wastewater treatment processes are specifically deliberated, considering the harmful impacts on human health arising from WWI originating from reuse of contaminated water (salts, organic pollutants, toxic metals, and microbial pathogens i.e., viruses and bacteria). The comprehensive literature survey revealed that, in addition to the increased levels of pathogen and microbial threats to human wellbeing, poorly-treated wastewater results in plant and soil contamination with toxic organic/inorganic chemicals, and microbial pathogens. The impact of long-term emerging pollutants like plastic nanoparticles should also be established in further studies, with the development of standardized analytical techniques for such hazardous chemicals. Likewise, the reliable, long-term and extensive judgment on heavy metals threat to human beings's health should be explored in future investigations.


Asunto(s)
Contaminantes Ambientales , Aguas Residuales , Humanos , Riego Agrícola/métodos , Agricultura , Suelo , Agua
6.
Environ Res ; 238(Pt 1): 117164, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37722579

RESUMEN

Arsenic (As) contamination poses a significant threat to human health, ecosystems, and agriculture, with levels ranging from 12 to 75% attributed to mine waste and stream sediments. This naturally element is abundant in Earth's crust and gets released into the environment through mining and rock processing, causing ≈363 million people to depend on As-contaminated groundwater. To combat this issue, introducing a sustainable hydrochar system has achieved a remarkable removal efficiency of over 92% for arsenic through adsorption. This comprehensive review presents an overview of As contamination in the environment, with a specific focus on its impact on drinking water and wastewater. It delves into the far-reaching effects of As on human health, ecosystems, aquatic systems, and agriculture, while also exploring the effectiveness of existing As treatment systems. Additionally, the study examines the potential of hydrochar as an efficient adsorbent for As removal from water/wastewater, along with other relevant adsorbents and biomass-based preparations of hydrochar. Notably, the fusion of hydrochar with nanoparticle-centric approaches presents a highly promising and environmentally friendly solution for achieving the removal of As from wastewater, exceeding >99% efficiency. This innovative approach holds immense potential for advancing the realms of green chemistry and environmental restoration. Various challenges associated with As contamination and treatment are highlighted, and proposed solutions are discussed. The review emphasizes the urgent need to advance treatment technologies, improve monitoring methods, and enhance regulatory frameworks. Looking outlook, the article underscores the importance of fostering research efforts, raising public awareness, and fostering interdisciplinary collaboration to address this critical environmental issue. Such efforts are vital for UN Sustainable Development Goals, especially clean water and sanitation (Goal 6) and climate action (Goal 13), crucial for global sustainability.


Asunto(s)
Arsénico , Restauración y Remediación Ambiental , Contaminantes Químicos del Agua , Purificación del Agua , Humanos , Aguas Residuales , Arsénico/análisis , Ecosistema , Agua , Contaminantes Químicos del Agua/análisis , Adsorción , Purificación del Agua/métodos
7.
J Environ Sci (China) ; 124: 146-155, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36182125

RESUMEN

In this study, the effects of soluble readily biodegradable COD (sCOD) and particulate slowly biodegradable COD (pCOD) on anammox process were investigated. The results of the long-term experiment indicated that a low sCOD/N ratio of 0.5 could accelerate the anammox and denitrification activity, to reach as high as 84.9%±2.8% TN removal efficiency. Partial denitrification-anammox (PDN/anammox) and denitrification were proposed as the major pathways for nitrogen removal, accounting for 91.3% and 8.7% of the TN removal, respectively. Anammox bacteria could remain active with high abundance of anammox genes to maintain its dominance. Candidatus Kuenenia and Thauera were the predominant genera in the presence of organic matter. Compared with sCOD, batch experiments showed that the introduction of pCOD had a negative effect on nitrogen removal. The contribution of denitrification to nitrogen removal decreased from approximately 14% to 3% with increasing percentage of pCOD. In addition, the analysis result of the process data using an optimized ASM1 model indicated that high percentage of pCOD resulted in serious N2O emission (the peak value up to 0.25 mg N/L), which was likely due to limited mass diffusion and insufficient available carbon sources for denitrification. However, a high sCOD/N ratio was beneficial for alleviating N2O accumulation.


Asunto(s)
Desnitrificación , Microbiota , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos/microbiología , Carbono , Nitrógeno , Oxidación-Reducción , Material Particulado , Aguas del Alcantarillado/microbiología , Aguas Residuales
8.
Environ Res ; 214(Pt 1): 113753, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35772505

RESUMEN

Due to the key role of nitrite in novel nitrogen removal systems, nitrite oxidizing bacteria (NOB) have been receiving increasing attention. In this study, the coexistence and interactions of nitrifying bacteria were explored at decreasing solids retention times (SRTs). Four 5-week washout experiments were carried out in laboratory-scale (V = 10 L) sequencing batch reactors (SBRs) with mixed liquor from two full-scale activated sludge systems (continuous flow vs SBR). During the experiments, the SRT was gradually reduced from the initial value of 4.0 d to approximately 1.0 d. The reactors were operated under limited dissolved oxygen conditions (set point of 0.6 mg O2/L) and two process temperatures: 12 °C (winter) and 20 °C (summer). At both temperatures, the progressive SRT reduction was inefficient for the out-selection of both canonical NOB and comammox Nitrospira. However, the dominant NOB switched from Nitrospira to Ca. Nitrotoga, whereas the dominant AOB was always Nitrosomonas. The results of this study are important for optimizing NOB suppression strategies in the novel N removal processes, which are based on nitrite accumulation.


Asunto(s)
Nitritos , Aguas del Alcantarillado , Amoníaco , Bacterias , Reactores Biológicos , Nitrógeno , Oxidación-Reducción
9.
Environ Res ; 215(Pt 3): 114432, 2022 12.
Artículo en Inglés | MEDLINE | ID: mdl-36167115

RESUMEN

The various forms of nitrogen (N), including ammonium (NH4+), nitrite (NO2-), and nitrate (NO3-), present in wastewaters can create critical biotic stress and can lead to hazardous phenomena that cause imbalances in biological diversity. Thus, biological nitrogen removal (BNR) from wastewaters is considered to be imperatively urgent. Therefore, anammox-based systems, i.e. partial nitrification and anaerobic ammonium oxidation (PN/anammox) and partial denitrification and anammox (PD/anammox) have been universally acknowledged to consider as alternatives, promising and cost-effective technologies for sustainable N removal from wastewaters compared to nitrification-denitrification processes. This review comprehensively presents and discusses the latest advances in BNR technologies, including traditional nitrification-denitrification and anammox-based systems. To a deep understanding of a better-controlled combining anammox with traditional processes, the microbial community diversity and metabolism, as well as, biomass morphological characteristics were clearly reviewed in the anammox-based systems. Explaining simultaneous microbial competition and control of crucial operation parameters in single-stage anammox-based processes in terms of optimization and economic benefits makes this contribution a different vision from available review papers. The most important sustainability indicators, including global warming potential (GWP), carbon footprint (CF) and energy behaviours were explored to evaluate the sustainability of BNR processes in wastewater treatment. Additionally, the challenges and solutions for BNR processes are extensively discussed. In summary, this review helps facilitate a critical understanding of N removal technologies. It is confirmed that sustainability and saving energy would be achieved by anammox-based systems, thereby could be encouraged future outcomes for a sustainable N removal economy.


Asunto(s)
Compuestos de Amonio , Purificación del Agua , Oxidación Anaeróbica del Amoníaco , Reactores Biológicos , Desnitrificación , Nitratos , Nitritos , Nitrógeno/metabolismo , Dióxido de Nitrógeno , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales
10.
J Environ Manage ; 323: 116040, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099865

RESUMEN

Activated sludge models are widely used to simulate, optimize and control performance of wastewater treatment plants (WWTP). For simulation of nutrient removal and energy consumption, kinetic parameters would need to be estimated, which requires an extensive measurement campaign. In this study, a novel methodology is proposed for modeling the performance and energy consumption of a biological nutrient removal activated sludge system under sensitivity and uncertainty. The actual data from the wastewater treatment plant in Slupsk (northern Poland) were used for the analysis. Global sensitivity analysis methods accounting for interactions between kinetic parameters were compared with the local sensitivity approach. An extensive procedure for estimation of kinetic parameters allowed to reduce the computational effort in the uncertainty analysis and improve the reliability of the computational results. Due to high costs of measurement campaigns for model calibration, a modification of the Generalized Likelihood Uncertainty method was applied considering the location of measurement points. The inclusion of nutrient measurements in the aerobic compartment in the uncertainty analysis resulted in percentages of ammonium, nitrate, ortho-phosphate measurements of 81%, 90%, 78%, respectively, in the 95% confidence interval. The additional inclusion of measurements in the anaerobic compartment resulted in an increase in the percentage of ortho-phosphate measurements in the aerobic compartment by 5% in the confidence interval. The developed procedure reduces computational and measurement efforts, while maintaining a high compatibility of the observed data and model predictions. This enables to implement activated sludge models also for the facilities with a limited availability of data.


Asunto(s)
Compuestos de Amonio , Aguas del Alcantarillado , Reactores Biológicos , Nitratos , Nutrientes , Fosfatos , Reproducibilidad de los Resultados , Incertidumbre , Eliminación de Residuos Líquidos/métodos , Aguas Residuales
11.
J Environ Manage ; 323: 116146, 2022 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-36099869

RESUMEN

Various derivatives of Hermia models (complete pore blocking, intermediate pore blocking, cake layer formation, and standard pore blocking) and different assessments of foulant characteristics have long been used to determine the membrane fouling mechanisms. Accordingly, this study aims to adapt Hermia models and their combination according to the operating conditions of an anoxic-aerobic sequencing batch membrane bioreactor (A/O-SBMBR). In addition, fouling mechanisms of the A/O-SBMBR were assessed using these models along with the main foulant characteristics. Models fitting with the transmembrane pressure (TMP) data indicated that the intermediate-standard model was accounting for the increased fouling during the whole regular operating period, with the residual sum of squares (RSS) of 58.3. A more detailed study on the distinct stages of TMP curve showed that the intermediate-standard model had the best fit in stages of 2 and 3, with the RSS equal to 2.6 and 2.8, respectively. Also, the complete-standard model provided the best description of the fouling mechanism in stage 4, with the RSS of 12.5. Different analyzes revealed how the main foulant characteristics affect the occurrence of intermediate, complete and standard fouling mechanisms in the A/O-SBMBR, which is consistent with the fitting results of the adapted Hermia models. The modeling and experimental methods used in the presented study provided a valuable basis to prevent and control membrane fouling in membrane bioreactors.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Aguas del Alcantarillado
12.
Environ Sci Technol ; 55(2): 1218-1230, 2021 01 19.
Artículo en Inglés | MEDLINE | ID: mdl-33378162

RESUMEN

In deammonification systems, nitrite-oxidizing bacteria (NOB) suppression and nitrous oxide (N2O) mitigation are two important operational objectives. To carry out this multivariable analysis of response, a comprehensive model for the N cycle was developed and evaluated against experimental data from a laboratory-scale deammonification granular sludge sequencing batch reactor. Different aeration strategies were tested, and the manipulated variables comprised the dissolved oxygen (DO) set point in the aerated phase, aeration on/off frequency (F), and the ratio (R) between the non-aerated and aerated phase durations. Experimental results showed that a high ammonium utilization rate (AUR) in relation to the low nitrate production rate (NPR) (NPR/AUR = 0.07-0.08) and limited N2O emissions (EN2O < 2%) could be achieved at the DO set point = 0.7 mg O2/L, R ratio = 2, and F frequency = 6-7 h-1. Under specific operational conditions (biomass concentration, NH4+-N loading rate, and temperature), simulation results confirmed the feasible aeration strategies for the trade-offs between the NOB suppression and N2O emission. The intermittent aeration regimes led to frequent shifts in the predominating N2O production pathways, that is, hydroxylamine (NH2OH) oxidation (aerated phase) versus autotrophic denitrification (non-aerated phase). The inclusion of the extracellular polymeric substance mechanism in the model explained the observed activity of heterotrophs, especially Anaerolineae, and granule formation.


Asunto(s)
Desnitrificación , Nitrógeno , Reactores Biológicos , Matriz Extracelular de Sustancias Poliméricas/química , Óxido Nitroso/análisis , Aguas del Alcantarillado
13.
Environ Res ; 197: 111065, 2021 06.
Artículo en Inglés | MEDLINE | ID: mdl-33831412

RESUMEN

Organotrophic anammox is a promising process for treating both nitrogen and organic containing wastewater than that of the traditional autotrophic anammox for sole nitrogen removal. However pathways of nitrogen removal particularly at metagenomic level in both processes are still unknown. Here we report, metabolic pathways of nitrogen removal in two lab-scale sequencing batch reactors (SBR), one autotrophic and another organotrophic (TOC/TN = 0.1) anammox bacteria incubated over 220 days. Both reactors showed satisfactory nitrogen removal with 840.31 mg N/L.d and 786.81 mg N/L.d for autotrophic and organotrophic anammox reactors respectively. Four anammox species namely Candidatus B. fulgida, B. sinica, J. caeni and Candidatus K. stuttgartiensis were identified in both reactors. The Candidatus K. stuttgartiensis (4%) was dominant in autotrophic reactor whereas Candidatus J. caeni (10%) in the organotrophic reactor. The supply of organic promoted the growth of anammox bacteria more than three times higher than that of the autotrophic anammox reactor. The functional genes related to the DNRA pathway was obtained in all anammox species except for Candidatus K. stuttgartiensis. The co-existence of other DNRA (Armatimonadetes and Thauera) and partial denitrifying bacteria (Chloroflexi) was also found in both reactors. Moreover, functional genes related to acetate metabolism by acetyl-CoA way were obtained in all anammox bacteria except Candidatus B. fulgida which showed alternative ackA/Pac-t pathways in organic anammox reactor. Overall current results suggest that the anammox, DNRA and partial denitrification were the key nitrogen transformation pathways, particularly in organotrophic anammox reactor. Our findings will improve understanding of the practical application of organotrophic anammox for wider wastewater treatment.


Asunto(s)
Nitrógeno , Purificación del Agua , Reactores Biológicos , Oxidación-Reducción , Aguas del Alcantarillado , Aguas Residuales/análisis
14.
Environ Res ; 201: 111488, 2021 10.
Artículo en Inglés | MEDLINE | ID: mdl-34153334

RESUMEN

Waste activated sludge (WAS) and animal manure are two significant reservoirs of glucocorticoids (GCs) in the environment. However, GC degradation during anaerobic digestion (AD) of WAS or animal manure has rarely been investigated. In this study, co-fermentation of WAS and animal manure was conducted to investigate the performance of AD in controlling GC dissemination. Effects of manure type on GC degradation and sludge acidification were investigated. The results showed that co-fermentation of WAS and chicken manure (CM) significantly enhanced the degradation of hydrocortisone (HC) to 99%, betamethasone (BT) to 99%, fluocinolone acetonide (FA) to 98%, and clobetasol propionate (CP) to 82% in 5 days with a mixing ratio of 1:1 (g TS sludge/g dw manure) at 55 °C and initial pH of 7. Simultaneously, sludge reduction was increased by 30% and value-added volatile fatty acid (VFA) production was improved by 40%. Even a high GC content of biomass (3.6 mg/g TS) did not impact both sludge hydrolysis and acidification. The amendment of WAS with CM increased soluble organic carbon, Ca2+, and relative abundance of anaerobes (Eubacterium) associated with organic compound degradation. Furthermore, 44 transformation products of HC, BT, FA, and CP with lower lipophilicity and toxicity were identified, indicating possible degradation pathways including hydroxylation, ketonization, ring cleavage, defluorination, hydrogenation, methylation, and de-esterification. Overall, this study provides a practical way to control GC pollution and simultaneously promote waste reduction and VFA production. Animal manure type as an overlooked factor for influencing co-fermentation performance and pollutant degradation was also highlighted.


Asunto(s)
COVID-19 , Aguas del Alcantarillado , Anaerobiosis , Animales , Reactores Biológicos , Ácidos Grasos Volátiles , Fermentación , Glucocorticoides , Humanos , Concentración de Iones de Hidrógeno , Estiércol , SARS-CoV-2
15.
J Environ Manage ; 297: 113223, 2021 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-34274771

RESUMEN

The newly discovered process complete ammonia oxidation (comammox) has changed the traditional understanding of nitrification. In this study, three possible concepts of comammox were developed and incorporated as part of an extended two-step nitrification model. For model calibration and validation, two series of long-term biomass washout experiments were carried out at 12 °C and 20 °C in a laboratory sequencing batch reactor. The inoculum biomass was withdrawn from a large biological nutrient removal wastewater treatment plant. The efficiency of the examined models was compared based on the behaviors of ammonia, nitrite, and nitrate in the studied reactor. Predictions of the conventional approach to comammox, assuming the direct oxidation of ammonia to nitrate, were slightly better than the two other approaches. Simulation results revealed that comammox could be responsible for the conversion of >20% of the influent ammonia load. Therefore, the role of commamox in the nitrogen mass balance in activated sludge systems should not be neglected and requires further investigation. Furthermore, sensitivity and correlation analysis revealed that the maximum growth rates (µ), oxygen half-saturation (KO), and decay rates (b) of the canonical nitrifiers and comammox were the most sensitive factors, and the highest correlation was found between µ and b among all considered kinetic parameters. The estimated µ values by the best model were 0.57, 0.11, and 0.15 d-1 for AOB, NOB, and comammox bacteria, respectively.


Asunto(s)
Nitrificación , Purificación del Agua , Amoníaco , Nitritos , Oxidación-Reducción , Filogenia
16.
Bioprocess Biosyst Eng ; 42(1): 143-155, 2019 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30291416

RESUMEN

The effect of distillery waste product (fusel oil) as an alternative external organic carbon source (EOCS) was investigated in terms of the metabolic properties of denitrifying polyphosphate accumulating organisms (DPAOs). Samples of the non-acclimated biomass were collected from a local full-scale wastewater treatment plant employing A2/O type bioreactors. The acclimated biomass was obtained after cultivation (with fusel oil added) in a bench-scale reactor with a process configuration similar to the full-scale bioreactor. Changes in the functional properties of the biomass were investigated by measuring the phosphate release/uptake rates (PRRs and PURs), and nitrate utilization rates (NURs) with fusel oil in anaerobic-anoxic batch tests. Furthermore, a validated extended Activated Sludge Model no 2d (ASM2d) was used as a supporting tool to analyze the experimental results and estimate the contribution of DPAOs to the overall denitrification. In the non-acclimated biomass with fusel oil, the PRRs, PURs and NURs were low and close to the rates obtained in a reference test without adding EOCS. With the acclimated biomass, the PUR and NUR increased significantly, i.e., 3.5 and 2.7 times, respectively. In the non-acclimated biomass, approximately 60.0 ± 3.6% and 20.0 ± 2.2% of the total NUR was attributed to the utilization of endogenous carbon and examined EOCS, respectively. The remaining portion (20% of the total NUR) was attributed to PHA utilization (linked to PO4-P uptake) by DPAOs. With the acclimated biomass, the contribution of the EOCS to the NUR increased to approximately 60%, while the contribution of the endogenous carbon source decreased accordingly. Very accurate predictions of PURs and NURs (R2 = 0.97-1.00) were obtained with the extended ASM2d. Based on model simulations, it was estimated that the activity of DPAOs and denitrifying ordinary heterotrophic organisms corresponded to approximately 20% and 80% of the total NUR, respectively.


Asunto(s)
Alcoholes/química , Reactores Biológicos , Carbono/química , Desnitrificación , Nitrógeno/química , Polifosfatos/química , Análisis de la Demanda Biológica de Oxígeno , Biomasa , Biotecnología , Simulación por Computador , Nitratos , Oxígeno/química , Fosfatos , Fósforo , Filogenia , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Aguas Residuales , Purificación del Agua
17.
Water Sci Technol ; 80(1): 37-47, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31461420

RESUMEN

Nitrous oxide (N2O) is one of the gases with the greatest impact in the atmosphere due to its persistence and significant contribution to the greenhouse effect. This study provides an insight into the dynamics of N2O production in wastewater nitrogen removal systems. A 10 L sequencing batch reactor containing enriched anammox biomass was subjected to different operational conditions, i.e., temperature, feed time, NO2 -/NH4 + ratio and the initial concentrations of NH4 + and NO2 -. Tests showed no significant differences in maximum N2O production when the system was operated with a shorter feed time and no increase in the operating temperature. A higher N2O production was observed when the initial NO2 -/NH4 + ratio increased from 1.3 to 1.7 and 1.9. The highest initial concentration of NO2 - was linked to an increase in residual N2O at the end of the batch cycle, probably due to heterotrophic denitrifying metabolism.


Asunto(s)
Reactores Biológicos , Óxido Nitroso/análisis , Aguas del Alcantarillado , Eliminación de Residuos Líquidos , Nitrógeno , Aguas Residuales
18.
Environ Sci Technol ; 52(5): 2800-2809, 2018 03 06.
Artículo en Inglés | MEDLINE | ID: mdl-29439574

RESUMEN

A mechanistic model was developed as an extension of the Activated Sludge Model No. 1 to describe three nitrous oxide (N2O) production pathways in a laboratory-scale anammox-enriched granular sequencing batch reactor. Heterotrophic denitrification and two processes mediated by ammonia oxidizing bacteria (AOB), that is, ammonia (NH4+) oxidation via hydroxylamine (NH2OH) and autotrophic denitrification, were considered. A systematic model calibration and validation protocol was developed to obtain a unique set of kinetic parameters in the extended model. The dynamic nitrate (NO3-), nitrite (NO2-), NH4+ and N2O behaviors were accurately predicted (R2 ≥ 0.81) under five different nitrogen loading conditions. The predicted N2O production factor ranged from 1.7 to 2.9%. The model-based analysis also revealed the dominant N2O production mechanisms in terms of the actual process conditions, that is, NH4+ oxidation via NH2OH when only NH4+ was supplied, heterotrophic denitrification when only NO2- was supplied, and a shift of the dominant mechanism when a mixture of NH4+ and NO2- was supplied.


Asunto(s)
Reactores Biológicos , Aguas del Alcantarillado , Amoníaco , Desnitrificación , Óxido Nitroso , Oxidación-Reducción
19.
Water Sci Technol ; 75(3-4): 727-740, 2017 02.
Artículo en Inglés | MEDLINE | ID: mdl-28192366

RESUMEN

The paper presents a model-based evaluation of technological upgrades on the energy and cost balance in a large biological nutrient removal (BNR) wastewater treatment plant (WWTP) in the city of Slupsk (northern Poland). The proposed upgrades include chemically enhanced primary sludge removal and reduction of the nitrogen load in the deammonification process employed for reject water treatment. Simulations enabled to estimate the increased biogas generation and decreased energy consumption for aeration. The proposed upgrades may lead the studied WWTP from the energy deficit to energy neutrality and positive cost balance, while still maintaining the required effluent standards for nitrogen. The operating cost balance depends on the type of applied coagulants/flocculants and specific costs of electric energy. The choice of the coagulant/flocculent was found as the main factor determining a positive cost balance.


Asunto(s)
Conservación de los Recursos Energéticos , Modelos Teóricos , Aguas del Alcantarillado/química , Aguas Residuales/química , Purificación del Agua/métodos , Floculación , Nitrógeno/análisis , Polonia , Purificación del Agua/economía
20.
Water Sci Technol ; 75(2): 378-386, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28112665

RESUMEN

The aim of the study was to determine the pH effects on nitrogen removal in the anammox-enriched granular sludge. The experimental data were extracted from a 4 L completely-mixed batch reactor with the granular sludge at different initial pH values (6, 6.5, 7, 7.5, 8, 8.5, 9, 9.5, 10, 10.5) and constant temperature T = 30 °C. Simulations were run in GPS-X 6.4 using a comprehensive mechanistic model Mantis2. Two kinetic parameters, the maximum specific growth rates of ammonia oxidizing bacteria (AOB) and anammox bacteria, were optimized at different pH scenarios. The inhibitory effects of the pH extremes on the anammox-enriched sludge were discussed in terms of the inhibition of free nitrous acid and free ammonia and metabolic mechanisms. Two different pH functions were used to examine the pH effects on the nitrogen removal kinetics. The pH optima for AOB and anammox bacteria were 7.4 and 7.6, respectively. The maximum specific growth rates of AOB and anammox bacteria at the pH optima were 0.81-0.85 d-1 and 0.36-0.38 d-1 (at T = 30 °C). The measured specific anammox activities (SAAs), predicted SAAs by Mantis2 and fitted SAAs by the Michaelis pH function at the pH optima were 0.895, 0.858 and 0.831 gN/(gVSS·d), respectively (VSS: volatile suspended solids).


Asunto(s)
Modelos Químicos , Nitrógeno/metabolismo , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/metabolismo , Amoníaco , Anaerobiosis , Reactores Biológicos , Desnitrificación , Concentración de Iones de Hidrógeno , Oxidación-Reducción , Aguas del Alcantarillado
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA