Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
J Biol Chem ; 298(10): 102472, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-36089066

RESUMEN

The membrane-bound complex II family of proteins is composed of enzymes that catalyze succinate and fumarate interconversion coupled with reduction or oxidation of quinones within the membrane domain. The majority of complex II enzymes are protein heterotetramers with the different subunits harboring a variety of redox centers. These redox centers are used to transfer electrons between the site of succinate-fumarate oxidation/reduction and the membrane domain harboring the quinone. A covalently bound FAD cofactor is present in the flavoprotein subunit, and the covalent flavin linkage is absolutely required to enable the enzyme to oxidize succinate. Assembly of the covalent flavin linkage in eukaryotic cells and many bacteria requires additional protein assembly factors. Here, we provide mechanistic details for how the assembly factors work to enhance covalent flavinylation. Both prokaryotic SdhE and mammalian SDHAF2 enhance FAD binding to their respective apoprotein of complex II. These assembly factors also increase the affinity for dicarboxylates to the apoprotein-noncovalent FAD complex and stabilize the preassembly complex. These findings are corroborated by previous investigations of the roles of SdhE in enhancing covalent flavinylation in both bacterial succinate dehydrogenase and fumarate reductase flavoprotein subunits and of SDHAF2 in performing the same function for the human mitochondrial succinate dehydrogenase flavoprotein. In conclusion, we provide further insight into assembly factor involvement in building complex II flavoprotein subunit active site required for succinate oxidation.


Asunto(s)
Flavoproteínas , Succinato Deshidrogenasa , Humanos , Succinato Deshidrogenasa/metabolismo , Flavoproteínas/química , Flavina-Adenina Dinucleótido/metabolismo , Flavinas/metabolismo , Ácido Succínico , Apoproteínas/metabolismo , Fumaratos
2.
Proc Natl Acad Sci U S A ; 117(38): 23548-23556, 2020 09 22.
Artículo en Inglés | MEDLINE | ID: mdl-32887801

RESUMEN

Mitochondrial complex II, also known as succinate dehydrogenase (SDH), is an integral-membrane heterotetramer (SDHABCD) that links two essential energy-producing processes, the tricarboxylic acid (TCA) cycle and oxidative phosphorylation. A significant amount of information is available on the structure and function of mature complex II from a range of organisms. However, there is a gap in our understanding of how the enzyme assembles into a functional complex, and disease-associated complex II insufficiency may result from incorrect function of the mature enzyme or from assembly defects. Here, we investigate the assembly of human complex II by combining a biochemical reconstructionist approach with structural studies. We report an X-ray structure of human SDHA and its dedicated assembly factor SDHAF2. Importantly, we also identify a small molecule dicarboxylate that acts as an essential cofactor in this process and works in synergy with SDHAF2 to properly orient the flavin and capping domains of SDHA. This reorganizes the active site, which is located at the interface of these domains, and adjusts the pKa of SDHAR451 so that covalent attachment of the flavin adenine dinucleotide (FAD) cofactor is supported. We analyze the impact of disease-associated SDHA mutations on assembly and identify four distinct conformational forms of the complex II flavoprotein that we assign to roles in assembly and catalysis.


Asunto(s)
Ácidos Dicarboxílicos/metabolismo , Complejo II de Transporte de Electrones , Flavinas/metabolismo , Proteínas Mitocondriales , Ácidos Dicarboxílicos/química , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Flavinas/química , Humanos , Proteínas Mitocondriales/química , Proteínas Mitocondriales/metabolismo , Modelos Moleculares , Pliegue de Proteína , Factores de Transcripción/química , Factores de Transcripción/metabolismo
3.
Biochemistry (Mosc) ; 87(8): 752-761, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-36171656

RESUMEN

The Complex II family encompasses membrane bound succinate:quinones reductases and quinol:fumarate reductases that catalyze interconversion of succinate and fumarate coupled with reduction and oxidation of quinone. These enzymes are found in all biological genres and share a modular structure where a highly conserved soluble domain is bound to a membrane-spanning domain that is represented by distinct variations. The current classification of the complex II family members is based on the number of subunits and co-factors in the membrane anchor (types A-F). This classification also provides insights into possible evolutionary paths and suggests that some of the complex II enzymes (types A-C) co-evolved as the whole assembly. Origin of complex II types D and F may have arisen from independent events of de novo association of the conserved soluble domain with a new anchor. Here we analyze a recent structure of Mycobacterium smegmatis Sdh2, a complex II enzyme with two transmembrane subunits and two heme b molecules. This analysis supports an earlier hypothesis suggesting that mitochondrial complex II (type C) with a single heme b may have evolved as an assembled unit from an ancestor similar to M. smegmatis Sdh2.


Asunto(s)
Hidroquinonas , Succinato Deshidrogenasa , Benzoquinonas , Sitios de Unión , Fumaratos/metabolismo , Hemo/metabolismo , Quinonas/metabolismo , Succinato Deshidrogenasa/metabolismo , Ácido Succínico
4.
J Biol Chem ; 293(20): 7754-7765, 2018 05 18.
Artículo en Inglés | MEDLINE | ID: mdl-29610278

RESUMEN

Complex II (SdhABCD) is a membrane-bound component of mitochondrial and bacterial electron transport chains, as well as of the TCA cycle. In this capacity, it catalyzes the reversible oxidation of succinate. SdhABCD contains the SDHA protein harboring a covalently bound FAD redox center and the iron-sulfur protein SDHB, containing three distinct iron-sulfur centers. When assembly of this complex is compromised, the flavoprotein SDHA may accumulate in the mitochondrial matrix or bacterial cytoplasm. Whether the unassembled SDHA has any catalytic activity, for example in succinate oxidation, fumarate reduction, reactive oxygen species (ROS) generation, or other off-pathway reactions, is not known. Therefore, here we investigated whether unassembled Escherichia coli SdhA flavoprotein, its homolog fumarate reductase (FrdA), and the human SDHA protein have succinate oxidase or fumarate reductase activity and can produce ROS. Using recombinant expression in E. coli, we found that the free flavoproteins from these divergent biological sources have inherently low catalytic activity and generate little ROS. These results suggest that the iron-sulfur protein SDHB in complex II is necessary for robust catalytic activity. Our findings are consistent with those reported for single-subunit flavoprotein homologs that are not associated with iron-sulfur or heme partner proteins.


Asunto(s)
Proteínas Bacterianas/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Escherichia coli/enzimología , Flavoproteínas/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Proteínas Bacterianas/química , Catálisis , Cristalografía por Rayos X , Complejo II de Transporte de Electrones/química , Flavoproteínas/química , Humanos , Modelos Moleculares , Oxidación-Reducción , Conformación Proteica , Subunidades de Proteína
5.
J Struct Biol ; 202(1): 100-104, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29158068

RESUMEN

Quinol:fumarate reductase (QFR) is an integral membrane protein and a member of the respiratory Complex II superfamily. Although the structure of Escherichia coli QFR was first reported almost twenty years ago, many open questions of catalysis remain. Here we report two new crystal forms of QFR, one grown from the lipidic cubic phase and one grown from dodecyl maltoside micelles. QFR crystals grown from the lipid cubic phase processed as P1, merged to 7.5 Šresolution, and exhibited crystal packing similar to previous crystal forms. Crystals grown from dodecyl maltoside micelles processed as P21, merged to 3.35 Šresolution, and displayed a unique crystal packing. This latter crystal form provides the first view of the E. coli QFR active site without a dicarboxylate ligand. Instead, an unidentified anion binds at a shifted position. In one of the molecules in the asymmetric unit, this is accompanied by rotation of the capping domain of the catalytic subunit. In the other molecule, this is associated with loss of interpretable electron density for this same capping domain. Analysis of the structure suggests that the ligand adjusts the position of the capping domain.


Asunto(s)
Proteínas de Escherichia coli/química , Proteínas de la Membrana/química , Oxidorreductasas/química , Dominios Proteicos , Sitios de Unión , Dominio Catalítico , Cristalografía , Cristalografía por Rayos X , Proteínas de Escherichia coli/metabolismo , Ligandos , Proteínas de la Membrana/metabolismo , Modelos Moleculares , Oxidorreductasas/metabolismo , Rotación
6.
J Biol Chem ; 292(31): 12921-12933, 2017 08 04.
Artículo en Inglés | MEDLINE | ID: mdl-28615448

RESUMEN

The Escherichia coli Complex II homolog quinol:fumarate reductase (QFR, FrdABCD) catalyzes the interconversion of fumarate and succinate at a covalently attached FAD within the FrdA subunit. The SdhE assembly factor enhances covalent flavinylation of Complex II homologs, but the mechanisms underlying the covalent attachment of FAD remain to be fully elucidated. Here, we explored the mechanisms of covalent flavinylation of the E. coli QFR FrdA subunit. Using a ΔsdhE E. coli strain, we show that the requirement for the assembly factor depends on the cellular redox environment. We next identified residues important for the covalent attachment and selected the FrdAE245 residue, which contributes to proton shuttling during fumarate reduction, for detailed biophysical and structural characterization. We found that QFR complexes containing FrdAE245Q have a structure similar to that of the WT flavoprotein, but lack detectable substrate binding and turnover. In the context of the isolated FrdA subunit, the anticipated assembly intermediate during covalent flavinylation, FrdAE245 variants had stability similar to that of WT FrdA, contained noncovalent FAD, and displayed a reduced capacity to interact with SdhE. However, small-angle X-ray scattering (SAXS) analysis of WT FrdA cross-linked to SdhE suggested that the FrdAE245 residue is unlikely to contribute directly to the FrdA-SdhE protein-protein interface. We also found that no auxiliary factor is absolutely required for flavinylation, indicating that the covalent flavinylation is autocatalytic. We propose that multiple factors, including the SdhE assembly factor and bound dicarboxylates, stimulate covalent flavinylation by preorganizing the active site to stabilize the quinone-methide intermediate.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Flavina-Adenina Dinucleótido/metabolismo , Modelos Moleculares , Oxidorreductasas/metabolismo , Procesamiento Proteico-Postraduccional , Sustitución de Aminoácidos , Biocatálisis , Cristalografía por Rayos X , Estabilidad de Enzimas , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleótido/química , Eliminación de Gen , Ácido Glutámico/química , Calor/efectos adversos , Simulación del Acoplamiento Molecular , Mutagénesis Sitio-Dirigida , Mutación , Oxidorreductasas/química , Oxidorreductasas/genética , Conformación Proteica , Desnaturalización Proteica , Dominios y Motivos de Interacción de Proteínas , Multimerización de Proteína , Subunidades de Proteína/química , Subunidades de Proteína/genética , Subunidades de Proteína/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homología Estructural de Proteína , Succinato Deshidrogenasa/genética , Succinato Deshidrogenasa/metabolismo
7.
J Biol Chem ; 291(6): 2904-16, 2016 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-26644464

RESUMEN

Escherichia coli harbors two highly conserved homologs of the essential mitochondrial respiratory complex II (succinate:ubiquinone oxidoreductase). Aerobically the bacterium synthesizes succinate:quinone reductase as part of its respiratory chain, whereas under microaerophilic conditions, the quinol:fumarate reductase can be utilized. All complex II enzymes harbor a covalently bound FAD co-factor that is essential for their ability to oxidize succinate. In eukaryotes and many bacteria, assembly of the covalent flavin linkage is facilitated by a small protein assembly factor, termed SdhE in E. coli. How SdhE assists with formation of the covalent flavin bond and how it binds the flavoprotein subunit of complex II remain unknown. Using photo-cross-linking, we report the interaction site between the flavoprotein of complex II and the SdhE assembly factor. These data indicate that SdhE binds to the flavoprotein between two independently folded domains and that this binding mode likely influences the interdomain orientation. In so doing, SdhE likely orients amino acid residues near the dicarboxylate and FAD binding site, which facilitates formation of the covalent flavin linkage. These studies identify how the conserved SdhE assembly factor and its homologs participate in complex II maturation.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/metabolismo , Flavina-Adenina Dinucleótido/metabolismo , Complejo II de Transporte de Electrones/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Flavina-Adenina Dinucleótido/genética
8.
Biochemistry ; 54(4): 1043-52, 2015 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-25569225

RESUMEN

The Complex II family of enzymes, comprising respiratory succinate dehydrogenases and fumarate reductases, catalyzes reversible interconversion of succinate and fumarate. In contrast to the covalent flavin adenine dinucleotide (FAD) cofactor assembled in these enzymes, soluble fumarate reductases (e.g., those from Shewanella frigidimarina) that assemble a noncovalent FAD cannot catalyze succinate oxidation but retain the ability to reduce fumarate. In this study, an SdhA-H45A variant that eliminates the site of the 8α-N3-histidyl covalent linkage between the protein and FAD was examined. Variants SdhA-R286A/K/Y and -H242A/Y that target residues thought to be important for substrate binding and catalysis were also studied. The variants SdhA-H45A and -R286A/K/Y resulted in the assembly of a noncovalent FAD cofactor, which led to a significant decrease (-87 mV or more) in its reduction potential. The variant enzymes were studied by electron paramagnetic resonance spectroscopy following stand-alone reduction and potentiometric titrations. The "free" and "occupied" states of the active site were linked to the reduced and oxidized states of FAD, respectively. Our data allow for a proposed model of succinate oxidation that is consistent with tunnel diode effects observed in the succinate dehydrogenase enzyme and a preference for fumarate reduction catalysis in fumarate reductase homologues that assemble a noncovalent FAD.


Asunto(s)
Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Flavina-Adenina Dinucleótido/metabolismo , Succinato Deshidrogenasa/metabolismo , Proteínas de Escherichia coli/química , Flavina-Adenina Dinucleótido/química , Oxidación-Reducción , Unión Proteica/fisiología , Estructura Secundaria de Proteína , Especificidad por Sustrato/fisiología , Succinato Deshidrogenasa/química
9.
Biochemistry ; 53(10): 1637-46, 2014 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-24559074

RESUMEN

Single electron transfers have been examined in complex II (succinate:ubiquinone oxidoreductase) by the method of pulse radiolysis. Electrons are introduced into the enzyme initially at the [3Fe-4S] and ubiquinone sites followed by intramolecular equilibration with the b heme of the enzyme. To define thermodynamic and other controlling parameters for the pathways of electron transfer in complex II, site-directed variants were constructed and analyzed. Variants at SdhB-His207 and SdhB-Ile209 exhibit significantly perturbed electron transfer between the [3Fe-4S] cluster and ubiquinone. Analysis of the data using Marcus theory shows that the electronic coupling constants for wild-type and variant enzyme are all small, indicating that electron transfer occurs by diabatic tunneling. The presence of the ubiquinone is necessary for efficient electron transfer to the heme, which only slowly equilibrates with the [3Fe-4S] cluster in the absence of the quinone.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Hemo/metabolismo , Transporte de Electrón , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Escherichia coli/química , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Hemo/química , Mutagénesis Sitio-Dirigida , Unión Proteica , Estructura Terciaria de Proteína , Ubiquinona/química , Ubiquinona/metabolismo
10.
J Biol Chem ; 288(34): 24293-301, 2013 Aug 23.
Artículo en Inglés | MEDLINE | ID: mdl-23836905

RESUMEN

Respiratory processes often use quinone oxidoreduction to generate a transmembrane proton gradient, making the 2H(+)/2e(-) quinone chemistry important for ATP synthesis. There are a variety of quinones used as electron carriers between bioenergetic proteins, and some respiratory proteins can functionally interact with more than one quinone type. In the case of complex II homologs, which couple quinone chemistry to the interconversion of succinate and fumarate, the redox potentials of the biologically available ubiquinone and menaquinone aid in driving the chemical reaction in one direction. In the complex II homolog quinol:fumarate reductase, it has been demonstrated that menaquinol oxidation requires at least one proton shuttle, but many of the remaining mechanistic details of menaquinol oxidation are not fully understood, and little is known about ubiquinone reduction. In the current study, structural and computational studies suggest that the sequential removal of the two menaquinol protons may be accompanied by a rotation of the naphthoquinone ring to optimize the interaction with a second proton shuttling pathway. However, kinetic measurements of site-specific mutations of quinol:fumarate reductase variants show that ubiquinone reduction does not use the same pathway. Computational docking of ubiquinone followed by mutagenesis instead suggested redundant proton shuttles lining the ubiquinone-binding site or from direct transfer from solvent. These data show that the quinone-binding site provides an environment that allows multiple amino acid residues to participate in quinone oxidoreduction. This suggests that the quinone-binding site in complex II is inherently plastic and can robustly interact with different types of quinones.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Simulación del Acoplamiento Molecular , Oxidorreductasas/química , Ubiquinona/química , Dominio Catalítico , Cinética , Relación Estructura-Actividad
11.
Biochim Biophys Acta ; 1827(5): 668-78, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23396003

RESUMEN

There are two homologous membrane-bound enzymes in Escherichia coli that catalyze reversible conversion between succinate/fumarate and quinone/quinol. Succinate:ubiquinone reductase (SQR) is a component of aerobic respiratory chains, whereas quinol:fumarate reductase (QFR) utilizes menaquinol to reduce fumarate in a final step of anaerobic respiration. Although, both protein complexes are capable of supporting bacterial growth on either minimal succinate or fumarate media, the enzymes are more proficient in their physiological directions. Here we evaluate factors that may underlie this catalytic bias. This article is part of a Special Issue entitled: Respiratory complex II: Role in cellular physiology and disease.


Asunto(s)
Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/metabolismo , Oxidorreductasas/metabolismo , Biocatálisis , Transporte de Electrón , Complejo II de Transporte de Electrones/química , Escherichia coli/enzimología , Escherichia coli/metabolismo , Proteínas de Escherichia coli/química , Fumaratos/química , Fumaratos/metabolismo , Modelos Moleculares , Estructura Molecular , Oxidorreductasas/química , Unión Proteica , Estructura Terciaria de Proteína , Quinonas/química , Quinonas/metabolismo , Ácido Succínico/química , Ácido Succínico/metabolismo
12.
Biochim Biophys Acta ; 1827(10): 1141-7, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23711795

RESUMEN

The Escherichia coli respiratory complex II paralogs succinate dehydrogenase (SdhCDAB) and fumarate reductase (FrdABCD) catalyze interconversion of succinate and fumarate coupled to quinone reduction or oxidation, respectively. Based on structural comparison of the two enzymes, equivalent residues at the interface between the highly homologous soluble domains and the divergent membrane anchor domains were targeted for study. This included the residue pair SdhB-R205 and FrdB-S203, as well as the conserved SdhB-K230 and FrdB-K228 pair. The close proximity of these residues to the [3Fe-4S] cluster and the quinone binding pocket provided an excellent opportunity to investigate factors controlling the reduction potential of the [3Fe-4S] cluster, the directionality of electron transfer and catalysis, and the architecture and chemistry of the quinone binding sites. Our results indicate that both SdhB-R205 and SdhB-K230 play important roles in fine tuning the reduction potential of both the [3Fe-4S] cluster and the heme. In FrdABCD, mutation of FrdB-S203 did not alter the reduction potential of the [3Fe-4S] cluster, but removal of the basic residue at FrdB-K228 caused a significant downward shift (>100mV) in potential. The latter residue is also indispensable for quinone binding and enzyme activity. The differences observed for the FrdB-K228 and Sdh-K230 variants can be attributed to the different locations of the quinone binding site in the two paralogs. Although this residue is absolutely conserved, they have diverged to achieve different functions in Frd and Sdh.


Asunto(s)
Escherichia coli/enzimología , Proteínas Hierro-Azufre/metabolismo , Hierro/química , Lisina/metabolismo , Succinato Deshidrogenasa/metabolismo , Azufre/química , Sitios de Unión , Catálisis , Dinitrocresoles/metabolismo , Espectroscopía de Resonancia por Spin del Electrón , Transporte de Electrón , Electroforesis en Gel de Poliacrilamida , Escherichia coli/genética , Escherichia coli/crecimiento & desarrollo , Proteínas Hierro-Azufre/química , Proteínas Hierro-Azufre/genética , Lisina/química , Lisina/genética , Mutagénesis Sitio-Dirigida , Oxidación-Reducción , Succinato Deshidrogenasa/química , Succinato Deshidrogenasa/genética
13.
Nat Microbiol ; 9(5): 1271-1281, 2024 May.
Artículo en Inglés | MEDLINE | ID: mdl-38632342

RESUMEN

Bacterial chemotaxis requires bidirectional flagellar rotation at different rates. Rotation is driven by a flagellar motor, which is a supercomplex containing multiple rings. Architectural uncertainty regarding the cytoplasmic C-ring, or 'switch', limits our understanding of how the motor transmits torque and direction to the flagellar rod. Here we report cryogenic electron microscopy structures for Salmonella enterica serovar typhimurium inner membrane MS-ring and C-ring in a counterclockwise pose (4.0 Å) and isolated C-ring in a clockwise pose alone (4.6 Å) and bound to a regulator (5.9 Å). Conformational differences between rotational poses include a 180° shift in FliF/FliG domains that rotates the outward-facing MotA/B binding site to inward facing. The regulator has specificity for the clockwise pose by bridging elements unique to this conformation. We used these structures to propose how the switch reverses rotation and transmits torque to the flagellum, which advances the understanding of bacterial chemotaxis and bidirectional motor rotation.


Asunto(s)
Proteínas Bacterianas , Quimiotaxis , Microscopía por Crioelectrón , Flagelos , Salmonella typhimurium , Flagelos/ultraestructura , Flagelos/fisiología , Flagelos/metabolismo , Salmonella typhimurium/ultraestructura , Salmonella typhimurium/fisiología , Salmonella typhimurium/metabolismo , Salmonella typhimurium/química , Proteínas Bacterianas/metabolismo , Proteínas Bacterianas/química , Proteínas Bacterianas/genética , Rotación , Modelos Moleculares , Sitios de Unión , Torque , Conformación Proteica , Proteínas de la Membrana
14.
Nat Commun ; 15(1): 473, 2024 Jan 11.
Artículo en Inglés | MEDLINE | ID: mdl-38212624

RESUMEN

Complex II (CII) activity controls phenomena that require crosstalk between metabolism and signaling, including neurodegeneration, cancer metabolism, immune activation, and ischemia-reperfusion injury. CII activity can be regulated at the level of assembly, a process that leverages metastable assembly intermediates. The nature of these intermediates and how CII subunits transfer between metastable complexes remains unclear. In this work, we identify metastable species containing the SDHA subunit and its assembly factors, and we assign a preferred temporal sequence of appearance of these species during CII assembly. Structures of two species show that the assembly factors undergo disordered-to-ordered transitions without the appearance of significant secondary structure. The findings identify that intrinsically disordered regions are critical in regulating CII assembly, an observation that has implications for the control of assembly in other biomolecular complexes.


Asunto(s)
Dominio Catalítico , Estructura Secundaria de Proteína
15.
J Biol Chem ; 287(42): 35430-35438, 2012 Oct 12.
Artículo en Inglés | MEDLINE | ID: mdl-22904323

RESUMEN

Complex II couples oxidoreduction of succinate and fumarate at one active site with that of quinol/quinone at a second distinct active site over 40 Å away. This process links the Krebs cycle to oxidative phosphorylation and ATP synthesis. The pathogenic mutation or inhibition of human complex II or its assembly factors is often associated with neurodegeneration or tumor formation in tissues derived from the neural crest. This brief overview of complex II correlates the clinical presentations of a large number of symptom-associated alterations in human complex II activity and assembly with the biochemical manifestations of similar alterations in the complex II homologs from Escherichia coli. These analyses provide clues to the molecular basis for diseases associated with aberrant complex II function.


Asunto(s)
Adenosina Trifosfato/biosíntesis , Ciclo del Ácido Cítrico/fisiología , Complejo II de Transporte de Electrones/fisiología , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimología , Animales , Humanos , Fosforilación/fisiología , Relación Estructura-Actividad
16.
J Biol Chem ; 286(14): 12756-65, 2011 Apr 08.
Artículo en Inglés | MEDLINE | ID: mdl-21310949

RESUMEN

Succinate-ubiquinone oxidoreductase (SQR) and menaquinol-fumarate oxidoreductase (QFR) from Escherichia coli are members of the complex II family of enzymes. SQR and QFR catalyze similar reactions with quinones; however, SQR preferentially reacts with higher potential ubiquinones, and QFR preferentially reacts with lower potential naphthoquinones. Both enzymes have a single functional quinone-binding site proximal to a [3Fe-4S] iron-sulfur cluster. A difference between SQR and QFR is that the redox potential of the [3Fe-4S] cluster in SQR is 140 mV higher than that found in QFR. This may reflect the character of the different quinones with which the two enzymes preferentially react. To investigate how the environment around the [3Fe-4S] cluster affects its redox properties and catalysis with quinones, a conserved amino acid proximal to the cluster was mutated in both enzymes. It was found that substitution of SdhB His-207 by threonine (as found in QFR) resulted in a 70-mV lowering of the redox potential of the cluster as measured by EPR. The converse substitution in QFR raised the redox potential of the cluster. X-ray structural analysis suggests that placing a charged residue near the [3Fe-4S] cluster is a primary reason for the alteration in redox potential with the hydrogen bonding environment having a lesser effect. Steady state enzyme kinetic characterization of the mutant enzymes shows that the redox properties of the [3Fe-4S] cluster have only a minor effect on catalysis.


Asunto(s)
Benzoquinonas/metabolismo , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/metabolismo , Hierro/química , Hierro/metabolismo , Azufre/metabolismo , Sitios de Unión , Cristalografía por Rayos X , Transporte de Electrón , Complejo II de Transporte de Electrones/genética , Proteínas de Escherichia coli/genética , Mutagénesis Sitio-Dirigida , Azufre/química
17.
J Biol Chem ; 286(4): 3047-56, 2011 Jan 28.
Artículo en Inglés | MEDLINE | ID: mdl-21098488

RESUMEN

Complex II superfamily members catalyze the kinetically difficult interconversion of succinate and fumarate. Due to the relative simplicity of complex II substrates and their similarity to other biologically abundant small molecules, substrate specificity presents a challenge in this system. In order to identify determinants for on-pathway catalysis, off-pathway catalysis, and enzyme inhibition, crystal structures of Escherichia coli menaquinol:fumarate reductase (QFR), a complex II superfamily member, were determined bound to the substrate, fumarate, and the inhibitors oxaloacetate, glutarate, and 3-nitropropionate. Optical difference spectroscopy and computational modeling support a model where QFR twists the dicarboxylate, activating it for catalysis. Orientation of the C2-C3 double bond of activated fumarate parallel to the C(4a)-N5 bond of FAD allows orbital overlap between the substrate and the cofactor, priming the substrate for nucleophilic attack. Off-pathway catalysis, such as the conversion of malate to oxaloacetate or the activation of the toxin 3-nitropropionate may occur when inhibitors bind with a similarly activated bond in the same position. Conversely, inhibitors that do not orient an activatable bond in this manner, such as glutarate and citrate, are excluded from catalysis and act as inhibitors of substrate binding. These results support a model where electronic interactions via geometric constraint and orbital steering underlie catalysis by QFR.


Asunto(s)
Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Modelos Químicos , Modelos Moleculares , Oxidorreductasas/química , Catálisis , Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/metabolismo , Proteínas de Escherichia coli/metabolismo , Fumaratos/química , Fumaratos/metabolismo , Oxidorreductasas/metabolismo , Especificidad por Sustrato/fisiología
18.
Biochim Biophys Acta ; 1797(12): 1877-82, 2010 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-20175986

RESUMEN

The complex II family of proteins includes succinate:quinone oxidoreductase (SQR) and quinol:fumarate oxidoreductase (QFR). In the facultative bacterium Escherichia coli both are expressed as part of the aerobic (SQR) and anaerobic (QFR) respiratory chains. SQR from E. coli is homologous to mitochondrial complex II and has proven to be an excellent model system for structure/function studies of the enzyme. Both SQR and QFR from E. coli are tetrameric membrane-bound enzymes that couple succinate/fumarate interconversion with quinone/quinol reduction/oxidation. Both enzymes are capable of binding either ubiquinone or menaquinone, however, they have adopted different quinone binding sites where catalytic reactions with quinones occur. A comparison of the structures of the quinone binding sites in SQR and QFR reveals how the enzymes have adapted in order to accommodate both benzo- and napthoquinones. A combination of structural, computational, and kinetic studies of members of the complex II family of enzymes has revealed that the catalytic quinone adopts different positions in the quinone-binding pocket. These data suggest that movement of the quinone within the quinone-binding pocket is essential for catalysis.


Asunto(s)
Complejo II de Transporte de Electrones/química , Proteínas de Escherichia coli/química , Estructura Terciaria de Proteína , Quinonas/química , Sitios de Unión , Biocatálisis , Dominio Catalítico , Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/metabolismo , Modelos Moleculares , Unión Proteica , Quinonas/metabolismo
19.
Biochim Biophys Acta ; 1797(6-7): 747-54, 2010.
Artículo en Inglés | MEDLINE | ID: mdl-20100456

RESUMEN

A b-type heme is conserved in membrane-bound complex II enzymes (SQR, succinate-ubiquinone reductase). The axial ligands for the low spin heme b in Escherichia coli complex II are SdhC His84 and SdhD His71. E. coli SdhD His71 is separated by 10 residues from SdhD Asp82 and Tyr83 which are essential for ubiquinone catalysis. The same His-10x-AspTyr motif dominates in homologous SdhD proteins, except for Saccharomyces cerevisiae where a tyrosine is at the axial position (Tyr-Cys-9x-AspTyr). Nevertheless, the yeast enzyme was suggested to contain a stoichiometric amount of heme, however, with the Cys ligand in the aforementioned motif acting as heme ligand. In this report, the role of Cys residues for heme coordination in the complex II family of enzymes is addressed. Cys was substituted to the SdhD-71 position and the yeast Tyr71Cys72 motif was also recreated. The Cys71 variant retained heme, although it was high spin, while the Tyr71Cys72 mutant lacked heme. Previously the presence of heme in S. cerevisiae was detected by a spectral peak in fumarate-oxidized, dithionite-reduced mitochondria. Here it is shown that this method must be used with caution. Comparison of bovine and yeast mitochondrial membranes shows that fumarate induced reoxidation of cytochromes in both SQR and the bc1 complex (ubiquinol-cytochrome c reductase). Thus, this report raises a concern about the presence of low spin heme b in S. cerevisiae complex II.


Asunto(s)
Complejo II de Transporte de Electrones/química , Complejo II de Transporte de Electrones/genética , Escherichia coli/enzimología , Escherichia coli/genética , Saccharomyces cerevisiae/enzimología , Saccharomyces cerevisiae/genética , Secuencias de Aminoácidos , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Secuencia de Bases , Bovinos , Cartilla de ADN/genética , Complejo II de Transporte de Electrones/metabolismo , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Hemo/química , Técnicas In Vitro , Cinética , Ligandos , Mitocondrias/enzimología , Modelos Moleculares , Datos de Secuencia Molecular , Mutagénesis Sitio-Dirigida , Mutación , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Proteínas de Saccharomyces cerevisiae/química , Proteínas de Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/metabolismo , Homología de Secuencia de Aminoácido , Especificidad de la Especie , Espectrofotometría
20.
J Biol Chem ; 284(43): 29836-46, 2009 Oct 23.
Artículo en Inglés | MEDLINE | ID: mdl-19710024

RESUMEN

Three new structures of Escherichia coli succinate-quinone oxidoreductase (SQR) have been solved. One with the specific quinone-binding site (Q-site) inhibitor carboxin present has been solved at 2.4 A resolution and reveals how carboxin inhibits the Q-site. The other new structures are with the Q-site inhibitor pentachlorophenol and with an empty Q-site. These structures reveal important details unresolved in earlier structures. Comparison of the new SQR structures shows how subtle rearrangements of the quinone-binding site accommodate the different inhibitors. The position of conserved water molecules near the quinone binding pocket leads to a reassessment of possible water-mediated proton uptake networks that complete reduction of ubiquinone. The dicarboxylate-binding site in the soluble domain of SQR is highly similar to that seen in high resolution structures of avian SQR (PDB 2H88) and soluble flavocytochrome c (PDB 1QJD) showing mechanistically significant structural features conserved across prokaryotic and eukaryotic SQRs.


Asunto(s)
Complejo II de Transporte de Electrones/química , Proteínas de Escherichia coli/química , Escherichia coli/enzimología , Ubiquinona/química , Animales , Sitios de Unión/fisiología , Aves , Carboxina/química , Estructura Cuaternaria de Proteína/fisiología , Homología Estructural de Proteína
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA