Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Asunto principal
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
Phys Chem Chem Phys ; 24(37): 22531-22537, 2022 Sep 28.
Artículo en Inglés | MEDLINE | ID: mdl-36111632

RESUMEN

Methacrolein oxide (MACR-OO), the isopropenyl substituted Criegee intermediate (CI), is one product of isoprene ozonolysis. In this work, we report MACR-OO's photo-isomerization paths with electronic structure calculation at the CASSCF and MS-CASPT2 levels and trajectory surface-hopping (TSH) nonadiabatic dynamics simulation at the CASSCF level. Our calculated results show that the ring-closure is the dominant photo-induced unimolecular isomerization of MACR-OO in the S1 state. In addition, a new photo-induced ring-closure to heterocyclopentane dioxole in syn_syn-MACR-OO is found. The findings of MACR-OO are expected to deepen the understanding of the substituted CIs and their photochemistry.


Asunto(s)
Óxidos , Ozono , Acroleína/análogos & derivados , Dioxoles , Tirotropina
2.
Phys Chem Chem Phys ; 23(22): 12749-12760, 2021 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-34041511

RESUMEN

The hydrolysis reaction of CH2OO with water and water clusters is believed to be a dominant sink for the CH2OO intermediate in the atmosphere. However, the favorable route for the hydrolysis of CH2OO with water clusters is still unclear. Here global minimum searching using the Tsinghua Global Minimum program has been introduced to find the most stable geometry of the CH2OO(H2O)n (n = 1-4) complex firstly. Then, based on these stable complexes, favorable hydrolysis of CH2OO with (H2O)n (n = 1-4) has been investigated using the quantum chemical method of CCSD(T)-F12a/cc-pVDZ-F12//B3LYP/6-311+G(2d,2p) and canonical variational transition state theory with small curvature tunneling. The calculated results have revealed that, although the contribution of CH2OO + (H2O)2 is the most obvious in the hydrolysis of CH2OO with (H2O)n (n = 1-4), the hydrolysis of CH2OO with (H2O)3 is not negligible in atmospheric gas-phase chemistry as its rate is close to the rate of the CH2OO + H2O reaction. The calculated results also show that, in a clean atmosphere, the CH2OO + (H2O)n (n = 1-2) reaction competes well with the CH2OO + SO2 reaction at 298 K when the concentrations of (H2O)n (n = 1-2) range from 20% relative humidity (RH) to 100% RH, and SO2 is 2.46 × 1011 molecules per cm3. Meanwhile, when the RH is higher than 40%, it is a new prediction that the CH2OO + (H2O)3 reaction can also compete well with the CH2OO + SO2 reaction at 298 K. Besides, Born-Oppenheimer molecular dynamics simulation results show that all the favorable channels of the CH2OO + (H2O)n (n = 1-3) reaction cannot react on a time scale of 100 ps in the NVT simulation. However, the NVE simulation results show that the CH2OO + (H2O)3 reaction can be finished well at 8.5 ps, indicating that the gas phase reaction of CH2OO + (H2O)3 is not negligible in the atmosphere. Overall, the present results have provided a definitive example of how the favorable hydrolysis of important atmospheric species with (H2O)n (n = 1-4) takes place, which will stimulate one to consider the favorable hydrolysis of water and water clusters with other Criegee intermediates and other important atmospheric species.

3.
RSC Adv ; 12(29): 18994-19005, 2022 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-35873325

RESUMEN

Acetaldehyde (CH3CHO) is ubiquitous in interstellar space and is important for astrochemistry as it can contribute to the formation of amino acids through reaction with nitrogen containing chemical species. Quantum chemical and reaction kinetics studies are reported for acetaldehyde formation from the chemical reaction of C(3P) with a methanol molecule adsorbed at the eighth position of a cubic water cluster. We present extensive quantum chemical calculations for total spin S = 1 and S = 0. The UωB97XD/6-311++G(2d,p) model chemistry is employed to optimize the structures, compute minimum energy paths and zero-point vibrational energies of all reaction steps. For the optimized structures, the calculated energies are refined by CCSD(T) single point computations. We identify four transition states on the triplet potential energy surface (PES), and one on the singlet PES. The reaction mechanism involves the intermediate formation of CH3OCH adsorbed on the ice cluster. The rate limiting step for forming acetaldehyde is the C-O bond breaking in CH3OCH to form adsorbed CH3 and HCO. We find two positions on the reaction path where spin crossing may be possible such that acetaldehyde can form in its singlet spin state. Using variational transition-state theory with multidimensional tunnelling we provide thermal rate constants for the energetically rate limiting step for both spin states and discuss two routes to acetaldehyde formation. As expected, quantum effects are important at low temperatures.

4.
RSC Adv ; 10(15): 9093-9102, 2020 Feb 27.
Artículo en Inglés | MEDLINE | ID: mdl-35496523

RESUMEN

The H2O2 + HO → HO2 + H2O reaction is an important reservoir for both radicals of HO and HO2 catalyzing the destruction of O3. Here, this reaction assisted by NH3 and HCOOH catalysts was explored using the CCSD(T)-F12a/cc-pVDZ-F12//M06-2X/aug-cc-pVTZ method and canonical variational transition state theory with small curvature tunneling. Two possible sets of mechanisms, (i) one-step routes and (ii) stepwise processes, are possible. Our results show that in the presence of both NH3 and HCOOH catalysts under relevant atmospheric temperature, mechanism (i) is favored both energetically and kinetically than the corresponding mechanism (ii). At 298 K, the relative rate for mechanism (i) in the presence of NH3 (10, 2900 ppbv) and HCOOH (10 ppbv) is respectively 3-5 and 2-4 orders of magnitude lower than that of the water-catalyzed reaction. This is due to a comparatively lower concentration of NH3 and HCOOH than H2O which indicates the positive water effect under atmospheric conditions. Although NH3 and HCOOH catalysts play a negligible role in the reservoir for both radicals of HO and HO2 catalyzing the destruction of O3, the current study provides a comprehensive example of how acidic and basic catalysts assisted the gas-phase reactions.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA