Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 45(1): 187-197, 2023 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-35635683

RESUMEN

Aluminum (Al) contamination in acidic soil is a major problem in paddy field, causing grain yield loss, especially in central plains of Thailand. The objective of this study was to assess Al content in the root tissues, its translocation to the leaves, and Al toxicity in three genotypes of rice, RD35 (local acidic-tolerant), Azucena (positive-check Al-tolerant), and IR64 (high yielding) under 0 (control) or 1 mM AlCl3 (Al toxicity) at pH 4.5. Al content in the root tissues of rice cv. RD35 under 1 mM AlCl3 was peaked at 4.18 mg g‒1 DW and significantly translocated to leaf tissues (0.35 mg g‒1 DW), leading to reduced leaf greenness (SPAD) (by 44.9% over the control) and declined net photosynthetic rate (Pn) (by 54.5% over the control). In contrast, Al level in cvs. Azucena and IR64 was restricted in the roots (2.12 mg g‒1 DW) with low amount of translocation in the leaf tissues (0.26 mg g‒1 DW), resulting in maintained values of SPAD and Pn. In cv. RD35, root and shoot traits including root length, root fresh weight, shoot height, shoot fresh weight, and shoot dry weight in 1 mM Al treatment were significantly dropped by > 35% over the control, whereas these parameters in cvs. Azucena and IR64 were retained. Based on the results, RD35 rice genotype was identified as Al sensitive as it demonstrated Al toxicity in both aboveground and belowground parts, whereas Azucena and IR64 were found tolerant to 1 mM Al as they demonstrated storage of Al in the root tissues to reduce toxicity in the leaf tissues. The study suggests that root traits, shoot attributes, chlorophyll degradation, and photosynthetic reduction can be successfully employed for the screening of Al-tolerant genotypes in rice breeding programs.


Asunto(s)
Oryza , Aluminio/toxicidad , Transporte Biológico , Fotosíntesis , Genotipo , Raíces de Plantas/metabolismo
2.
J Sci Food Agric ; 98(2): 566-573, 2018 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-28646518

RESUMEN

BACKGROUND: Brown rice (BR) and germinated brown rice (GBR) are considered as prime sources of carbohydrate and bioactive compounds for more than half of the populations worldwide. Several studies have reported on the proteomics of BR and GBR; however, the proteomic profiles related to the synthesis of bioactive compounds are less well documented. In the present study, BR and GBR were used in a comparative analysis of the proteomic and bioactive compound profiles for two famous Thai rice varieties: Khao Dawk Mali 105 (KDML) and Mali Daeng (MD). RESULTS: The proteomes of KDML and MD revealed differences in the expression patterns of proteins after germination. Total phenolic compound content, anthocyanin contents and antioxidant activity of red rice MD was approximately 2.6-, 2.2- and 9.2-fold higher, respectively, compared to that of the white rice KDML. Moreover, GBR of MD showed higher total anthocyanin content and greater antioxidant activity, which is consistent with the increase expression of several proteins involved in the biosynthesis of phenolic compounds and protection against oxidative stress. CONCLUSION: Red rice MD exhibits higher nutrient values compared to white rice KDML and the appropriate germination of brown rice could represent a method for improving health-related benefits. © 2017 Society of Chemical Industry.


Asunto(s)
Antioxidantes/química , Oryza/química , Fenoles/química , Extractos Vegetales/metabolismo , Proteínas de Plantas/química , Semillas/crecimiento & desarrollo , Antioxidantes/metabolismo , Germinación , Valor Nutritivo , Oryza/clasificación , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Fenoles/metabolismo , Extractos Vegetales/química , Proteínas de Plantas/metabolismo , Proteoma , Proteómica , Semillas/química , Semillas/metabolismo
3.
Environ Sci Pollut Res Int ; 31(9): 13816-13832, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38265595

RESUMEN

Toxicity resulting from high levels of inorganic arsenic (iAs), specifically arsenite (AsIII) and arsenate (AsV), significantly induces oxidative stress and inhibits the growth of rice plants in various ways. Despite its economic importance and significance as a potent elite trait donor in rice breeding programmes, Khao Dawk Mali 105 (KDML105) has received limited attention regarding its responses to As stress. Therefore, this study aimed to comprehensively investigate how KDML105 responds to elevated AsIII and AsV stress levels. In this study, the growth, physiology, biochemical attributes and levels of As stress-associated transcripts were analysed in 45-day-old rice plants after exposing them to media containing 0, 75, 150, 300 and 600 µM AsIII or AsV for 1 and 7 days, respectively. The results revealed that AsIII had a more pronounced impact on the growth and physiological responses of KDML105 compared to AsV at equivalent concentrations. Under elevated AsIII treatment, there was a reduction in growth and photosynthetic efficiency, accompanied by increased levels of hydrogen peroxide (H2O2) and malondialdehyde (MDA). Notably, the total contents of antioxidants, such as proline, phenolics and flavonoids in the shoot, increased by 8.1-fold, 1.4-fold and 1.6-fold, respectively. Additionally, the expression of the OsABCC1 gene in the roots increased by 9.5-fold after exposure to 150 µM AsIII for 1 day. These findings suggest that KDML105's prominent responses to As stress involve sequestering AsIII in vacuoles through the up-regulation of the OsABCC1 gene in the roots, along with detoxifying excessive stress in the leaves through proline accumulation. These responses could serve as valuable traits for selecting As-tolerant rice varieties.


Asunto(s)
Arsénico , Arsenitos , Oryza , Arseniatos/toxicidad , Arseniatos/metabolismo , Arsenitos/toxicidad , Arsenitos/metabolismo , Peróxido de Hidrógeno/metabolismo , Malí , Fitomejoramiento , Raíces de Plantas/metabolismo , Prolina/metabolismo , Arsénico/toxicidad , Arsénico/metabolismo
4.
Environ Sci Pollut Res Int ; 28(23): 29321-29331, 2021 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-33555471

RESUMEN

Aluminum (Al) toxicity in acidic soils is a major problem in rice crop production, especially in the acid sulfate soil (pH < 4.0). Selecting Al-tolerant varieties of rice with low toxicity is one of the most appropriate strategies to overcome this problem. In the present study, we investigated the Al content in different rice genotypes, IR64 (high yielding), RD35 (local acidic-tolerant), and Azucena (AZU, positive-check Al-tolerant), and their physiological and morphological adaptations under a wide range Al (10, 25, 50 mM [Al2(SO4)3]) treatments in the greenhouse conditions. Under 50-mM Al treatment, Al levels in the root tissues of rice seedlings cvs. AZU and IR64 were increased by 2.74- and 2.10-fold over control. Interestingly, Al contents in the roots of cv. RD35 were also exhibited by 2.04-fold over control. Similarly, Al contents in the leaves trend to increase in relation to a degree of Al treatments, leading to increase leaf temperature, chlorophyll degradation, limited CO2 assimilation, and negative effect on root traits under 50 mM Al were evidently observed. Therefore, leaf temperature was considered a sensitive parameter regulated by high concentration of Al (50 mM), leading to increase in crop water stress index (CWSI > 0.6) and decrease in stomata conductance. Net photosynthetic rate (Pn) and transpiration rate (E) in rice seedlings of cv. RD35 subjected to 50 mM Al were significantly dropped by 74.76% and 47.71% over the control, respectively, resulting in reduced growth performances in terms of root length (26.57% reduction) and shoot fresh weight (46.15% reduction). An enrichment of Al in the root tissues without toxicity in rice cv. AZU may further help in discovering the Al homeostasis. In summary, Al enrichment in rice genotypes grown under Al-treatments was evidently observed in the root, leading to the limited root growth, root length, and root dry weight, especially in cv. RD35. Al restriction in the root tissues of cv. AZU (Al-tolerant) may play a key role as defense mechanisms to avoid translocation to other organs and the stomata closure was an alternative key factor to limit H2O transpiration.


Asunto(s)
Oryza , Aluminio/toxicidad , Fotosíntesis , Hojas de la Planta , Raíces de Plantas , Plantones
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA