Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Int J Mol Sci ; 23(11)2022 May 25.
Artículo en Inglés | MEDLINE | ID: mdl-35682616

RESUMEN

Epoxyeicosatrienoic acids (EETs) are signaling lipids produced by the cytochrome P450-(CYP450)-mediated epoxygenation of arachidonic acid. EETs have numerous biological effects on the vascular system, but aspects including their species specificity make their effects on vascular tone controversial. CYP450 enzymes require the 450-reductase (POR) for their activity. We set out to determine the contribution of endothelial CYP450 to murine vascular function using isolated aortic ring preparations from tamoxifen-inducible endothelial cell-specific POR knockout mice (ecPOR-/-). Constrictor responses to phenylephrine were similar between control (CTR) and ecPOR-/- mice. Contrastingly, sensitivity to the thromboxane receptor agonist U46619 and prostaglandin E2 (PGE2) was increased following the deletion of POR. Ex vivo incubation with a non-hydrolyzable EET (14,15-EE-8(Z)-E, EEZE) reversed the increased sensitivity to U46619 to the levels of CTR. EETs had no effect on vascular tone in phenylephrine-preconstricted vessels, but dilated vessels contracted with U46619 or PGE2. As U46619 acts through RhoA-dependent kinase, this system was analyzed. The deletion of POR affected the expression of genes in this pathway and the inhibition of Rho-GTPase with SAR407899 decreased sensitivity to U46619. These data suggest that EET and prostanoid crosstalk at the receptor level and that lack of EET production sensitizes vessels to vasoconstriction via the induction of the Rho kinase system.


Asunto(s)
Ácido 8,11,14-Eicosatrienoico , Prostaglandinas , Ácido 15-Hidroxi-11 alfa,9 alfa-(epoximetano)prosta-5,13-dienoico/farmacología , Ácido 8,11,14-Eicosatrienoico/farmacología , Animales , Dinoprostona , Ratones , Fenilefrina/farmacología , Prostaglandinas/metabolismo
2.
Int J Mol Sci ; 22(15)2021 Jul 21.
Artículo en Inglés | MEDLINE | ID: mdl-34360575

RESUMEN

Many proteins have been found to operate in a complex with various biomolecules such as proteins, nucleic acids, carbohydrates, or lipids. Protein complexes can be transient, stable or dynamic and their association is controlled under variable cellular conditions. Complexome profiling is a recently developed mass spectrometry-based method that combines mild separation techniques, native gel electrophoresis, and density gradient centrifugation with quantitative mass spectrometry to generate inventories of protein assemblies within a cell or subcellular fraction. This review summarizes applications of complexome profiling with respect to assembly ranging from single subunits to large macromolecular complexes, as well as their stability, and remodeling in health and disease.


Asunto(s)
Complejos Multiproteicos/química , Complejos Multiproteicos/fisiología , Proteínas/química , Proteínas/fisiología , Animales , Humanos
3.
Science ; 381(6660): 897-906, 2023 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-37616346

RESUMEN

Aging is a major risk factor for impaired cardiovascular health. Because the aging myocardium is characterized by microcirculatory dysfunction, and because nerves align with vessels, we assessed the impact of aging on the cardiac neurovascular interface. We report that aging reduces nerve density in the ventricle and dysregulates vascular-derived neuroregulatory genes. Aging down-regulates microRNA 145 (miR-145) and derepresses the neurorepulsive factor semaphorin-3A. miR-145 deletion, which increased Sema3a expression or endothelial Sema3a overexpression, reduced axon density, mimicking the aged-heart phenotype. Removal of senescent cells, which accumulated with chronological age in parallel to the decline in nerve density, rescued age-induced denervation, reversed Sema3a expression, preserved heart rate patterns, and reduced electrical instability. These data suggest that senescence-mediated regulation of nerve density contributes to age-associated cardiac dysfunction.


Asunto(s)
Envejecimiento , Senescencia Celular , Corazón , MicroARNs , Densidad Microvascular , Miocardio , Semaforina-3A , Corazón/inervación , Microcirculación , MicroARNs/genética , MicroARNs/metabolismo , Semaforina-3A/genética , Animales , Ratones , Envejecimiento/genética , Envejecimiento/patología , Masculino , Ratones Endogámicos C57BL , Senescencia Celular/genética , Miocardio/patología , Axones
4.
Antioxidants (Basel) ; 11(2)2022 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-35204316

RESUMEN

Reactive oxygen species (ROS) are important mediators of both physiological and pathophysiological signal transduction in the cardiovascular system. The effects of ROS on cellular processes depend on the concentration, localization, and duration of exposure. Cellular stress response mechanisms have evolved to mitigate the negative effects of acute oxidative stress. In this study, we investigate the short-term and long-term metabolic and transcriptomic response of human umbilical vein endothelial cells (HUVEC) to different types and concentrations of ROS. To generate intracellular H2O2, we utilized a lentiviral chemogenetic approach for overexpression of human D-amino acid oxidase (DAO). DAO converts D-amino acids into their corresponding imino acids and H2O2. HUVEC stably overexpressing DAO (DAO-HUVEC) were exposed to D-alanine (3 mM), exogenous H2O2 (10 µM or 300 µM), or menadione (5 µM) for various timepoints and subjected to global untargeted metabolomics (LC-MS/MS) and RNAseq by MACE (Massive analysis of cDNA ends). A total of 300 µM H2O2 led to pronounced changes on both the metabolic and transcriptomic level. In particular, metabolites linked to redox homeostasis, energy-generating pathways, and nucleotide metabolism were significantly altered. Furthermore, 300 µM H2O2 affected genes related to the p53 pathway and cell cycle. In comparison, the effects of menadione and DAO-derived H2O2 mainly occurred at gene expression level. Collectively, all types of ROS led to subtle changes in the expression of ribosomal genes. Our results show that different types and concentration of ROS lead to a different metabolic and transcriptomic response in endothelial cells.

5.
Hypertension ; 79(6): 1216-1226, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-35354305

RESUMEN

BACKGROUND: POR (cytochrome P450 reductase) provides electrons for the catalytic activity of the CYP (cytochrome P450) monooxygenases. CYPs are dual-function enzymes as they generate protective vasoactive mediators derived from polyunsaturated fatty acids but also reactive oxygen species. It is not known in which conditions the endothelial POR/CYP system is beneficial versus deleterious. Here, the activity of all CYP enzymes was eliminated in the vascular endothelium to examine its impact on vascular function. METHODS: An endothelial-specific, tamoxifen-inducible POR knockout mouse (ecPOR-/-) was generated. Vascular function was studied by organ chamber experiments. eNOS (endothelial nitric oxide synthase) activity was accessed by heavy arginine/citrulline LC-MS/MS detection and phosphorylation of serine1177 in aortic rings. CYP-derived epoxyeicosatrienoic acids and prostanoids were measured by LC-MS/MS. Gene expression of aorta and endothelial cells was profiled by RNA sequencing. Blood pressure was measured by telemetry. RESULTS: Acetylcholine-induced endothelium-dependent relaxation was attenuated in isolated vessels of ecPOR-/- as compared with control mice. Additionally, ecPOR-/- mice had attenuated eNOS activity and eNOS/AKT phosphorylation. POR deletion reduced endothelial stores of CYP-derived epoxyeicosatrienoic acids but increased vascular prostanoids. This phenomenon was paralleled by the induction of genes implicated in eicosanoid generation. In response to Ang II (angiotensin II) infusion, blood pressure increased significantly more in ecPOR-/- mice. Importantly, the cyclooxygenase inhibitor Naproxen selectively lowered the Ang II-induced hypertension in ecPOR-/- mice. CONCLUSIONS: POR expression in endothelial cells maintains eNOS activity and its loss results in an overactivation of the vasoconstrictor prostanoid system. Through these mechanisms, loss of endothelial POR induces vascular dysfunction and hypertension.


Asunto(s)
Hipertensión , NADPH-Ferrihemoproteína Reductasa , Animales , Cromatografía Liquida , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Células Endoteliales/metabolismo , Endotelio Vascular/metabolismo , Hipertensión/inducido químicamente , Hipertensión/metabolismo , Ratones , Ratones Noqueados , NADPH-Ferrihemoproteína Reductasa/metabolismo , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/metabolismo , Prostaglandinas/metabolismo , Espectrometría de Masas en Tándem , Vasodilatación
6.
Antioxidants (Basel) ; 10(7)2021 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-34356336

RESUMEN

The NADPH oxidase Nox4 is a hydrogen peroxide (H2O2)-producing enzyme, with the highest expression in the kidney. As the kidney is involved in volume and blood pressure control through sodium handling, we set out to determine the impact of a low sodium diet on these parameters in WT and Nox4-/- mice. Nox4 expression in the murine kidney was restricted to the proximal tubule. Nevertheless, low-sodium-induced weight loss and sodium sparing function was similar in WT and Nox4-/- mice, disputing an important function of renal Nox4 in sodium handling. In contrast, a low sodium diet resulted in a reduction in systolic blood pressure in Nox4-/- as compared to WT mice. This was associated with a selectively lower pressure to heart-rate ratio, as well as heart to body weight ratio. In general, a low sodium diet leads to activation of sympathetic tone and the renin angiotensin system, which subsequently increases peripheral resistance. Our observations suggest that the control by this system is attenuated in Nox4-/- mice, resulting in lower blood pressure in response to low sodium.

7.
Cardiovasc Res ; 117(6): 1546-1556, 2021 05 25.
Artículo en Inglés | MEDLINE | ID: mdl-32653904

RESUMEN

AIMS: Receptor-type vascular endothelial protein tyrosine phosphatase (VE-PTP) dephosphorylates Tie-2 as well as CD31, VE-cadherin, and vascular endothelial growth factor receptor 2 (VEGFR2). The latter form a signal transduction complex that mediates the endothelial cell response to shear stress, including the activation of the endothelial nitric oxide (NO) synthase (eNOS). As VE-PTP expression is increased in diabetes, we investigated the consequences of VE-PTP inhibition (using AKB-9778) on blood pressure in diabetic patients and the role of VE-PTP in the regulation of eNOS activity and vascular reactivity. METHODS AND RESULTS: In diabetic patients AKB-9778 significantly lowered systolic and diastolic blood pressure. This could be linked to elevated NO production, as AKB increased NO generation by cultured endothelial cells and elicited the NOS inhibitor-sensitive relaxation of endothelium-intact rings of mouse aorta. At the molecular level, VE-PTP inhibition increased the phosphorylation of eNOS on Tyr81 and Ser1177 (human sequence). The PIEZO1 activator Yoda1, which was used to mimic the response to shear stress, also increased eNOS Tyr81 phosphorylation, an effect that was enhanced by VE-PTP inhibition. Two kinases, i.e. abelson-tyrosine protein kinase (ABL)1 and Src were identified as eNOS Tyr81 kinases as their inhibition and down-regulation significantly reduced the basal and Yoda1-induced tyrosine phosphorylation and activity of eNOS. VE-PTP, on the other hand, formed a complex with eNOS in endothelial cells and directly dephosphorylated eNOS Tyr81 in vitro. Finally, phosphorylation of eNOS on Tyr80 (murine sequence) was found to be reduced in diabetic mice and diabetes-induced endothelial dysfunction (isolated aortic rings) was blunted by VE-PTP inhibition. CONCLUSIONS: VE-PTP inhibition enhances eNOS activity to improve endothelial function and decrease blood pressure indirectly, through the activation of Tie-2 and the CD31/VE-cadherin/VEGFR2 complex, and directly by dephosphorylating eNOS Tyr81. VE-PTP inhibition, therefore, represents an attractive novel therapeutic option for diabetes-induced endothelial dysfunction and hypertension.


Asunto(s)
Compuestos de Anilina/uso terapéutico , Antihipertensivos/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Células Endoteliales/efectos de los fármacos , Endotelio Vascular/efectos de los fármacos , Inhibidores Enzimáticos/uso terapéutico , Hipertensión/tratamiento farmacológico , Óxido Nítrico Sintasa de Tipo III/metabolismo , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/antagonistas & inhibidores , Ácidos Sulfónicos/uso terapéutico , Animales , Presión Sanguínea/efectos de los fármacos , Células Cultivadas , Diabetes Mellitus/enzimología , Diabetes Mellitus/genética , Diabetes Mellitus/fisiopatología , Modelos Animales de Enfermedad , Células Endoteliales/enzimología , Endotelio Vascular/enzimología , Endotelio Vascular/fisiopatología , Humanos , Hipertensión/enzimología , Hipertensión/genética , Hipertensión/fisiopatología , Ratones Endogámicos C57BL , Ratones Transgénicos , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo III/genética , Fosforilación , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/genética , Proteínas Tirosina Fosfatasas Clase 3 Similares a Receptores/metabolismo , Transducción de Señal , Resultado del Tratamiento , Estados Unidos
8.
Theranostics ; 8(8): 2117-2133, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-29721067

RESUMEN

RATIONALE: Classic histology is the gold standard for vascular network imaging and analysis. The method however is laborious and prone to artefacts. Here, the suitability of ultramicroscopy (UM) and micro-computed tomography (CT) was studied to establish potential alternatives to histology. METHODS: The vasculature of murine organs (kidney, heart and atherosclerotic carotid arteries) was visualized using conventional 2D microscopy, 3D light sheet ultramicroscopy (UM) and micro-CT. Moreover, spheroid-based human endothelial cell vessel formation in mice was quantified. Fluorescently labeled Isolectin GS-IB4 A647 was used for in vivo labeling of vasculature for UM analysis, and analyses were performed ex vivo after sample preparation. For CT imaging, animals were perfused postmortem with radiopaque contrast agent. RESULTS: Using UM imaging, 3D vascular network information could be obtained in samples of animals receiving in vivo injection of the fluorescently labeled Isolectin GS-IB4. Resolution was sufficient to measure single endothelial cell integration into capillaries in the spheroid-based matrigel plug assay. Because of the selective staining of the endothelium, imaging of larger vessels yielded less favorable results. Using micro-CT or even nano-CT, imaging of capillaries was impossible due to insufficient X-ray absorption and thus insufficient signal-to-noise ratio. Identification of lumen in murine arteries using micro-CT was in contrast superior to UM. CONCLUSION: UM and micro-CT are two complementary techniques. Whereas UM is ideal for imaging and especially quantifying capillary networks and arterioles, larger vascular structures are easier and faster to quantify and visualize using micro-CT. 3D information of both techniques is superior to 2D histology. UM and micro-CT together may open a new field of clinical pathology diagnosis.


Asunto(s)
Vasos Sanguíneos/diagnóstico por imagen , Imagenología Tridimensional , Microscopía/métodos , Microtomografía por Rayos X , Animales , Colágeno/farmacología , Vasos Coronarios/diagnóstico por imagen , Combinación de Medicamentos , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Humanos , Riñón/irrigación sanguínea , Laminina/farmacología , Ratones Endogámicos C57BL , Neovascularización Fisiológica , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Proteoglicanos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA