Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
J Am Chem Soc ; 142(36): 15464-15475, 2020 Sep 09.
Artículo en Inglés | MEDLINE | ID: mdl-32786772

RESUMEN

Many monumental breakthroughs in p-type PbTe thermoelectrics are driven by optimizing a Pb0.98Na0.02Te matrix. However, recent works found that x > 0.02 in Pb1-xNaxTe further improves the thermoelectric figure of merit, zT, despite being above the expected Na solubility limit. We explain the origins of improved performance from excess Na doping through computation and experiments on Pb1-xNaxTe with 0.01 ≤ x ≤ 0.04. High temperature X-ray diffraction and Hall carrier concentration measurements show enhanced Na solubility at high temperatures when x > 0.02 but no improvement in carrier concentration, indicating that Na is entering the lattice but is electrically compensated by high intrinsic defect concentrations. The higher Na concentration leads to band convergence between the light L and heavy Σ valence bands in PbTe, suppressing bipolar conduction and increasing the Seebeck coefficient. This results in a high temperature zT nearing 2 for Pb0.96Na0.04Te, ∼25% higher than traditionally reported values for pristine PbTe-Na. Further, we apply a phase diagram approach to explain the origins of increased solubility from excess Na doping and offer strategies for repeatable synthesis of high zT Na-doped materials. A starting matrix of simple, high performing Pb0.96Na0.04Te synthesized following our guidelines may be superior to Pb0.98Na0.02Te for continued zT optimization in p-type PbTe materials.

2.
Mater Horiz ; 9(2): 825-834, 2022 02 07.
Artículo en Inglés | MEDLINE | ID: mdl-34913452

RESUMEN

Fracture mechanics is a fundamental topic to materials science. Fracture toughness, in particular, is a material property of great technological importance for device design. The relatively low fracture toughness of many semiconductor materials, including electronic and energy materials, handicaps their use in applications involving large external stresses. Here, it is shown that quantum-mechanical density functional theory calculations of ideal strength, in conjunction with an integral stress-displacement method, can be used to estimate the fracture energy needed to calculate fracture toughness. Using the fracture energy associated with the weakest crystallographic direction provides an estimation for the lower-limit of the fracture toughness of a material. The lower-limit values are in good agreement with experimental single crystal measurements across several orders-of-magnitude of fracture toughness. Furthermore, the proposed methodology is useful for benchmarking experimental measurements of fracture toughness in polycrystalline materials and can serve as a starting point for the construction of more detailed fracture models and the computational design of new materials and devices.


Asunto(s)
Fracturas Óseas , Fenómenos Biomecánicos , Humanos , Ciencia de los Materiales
3.
Adv Mater ; 34(38): e2204132, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35944565

RESUMEN

Cation disordering is commonly found in multinary cubic compounds, but its effect on electronic properties has been neglected because of difficulties in determining the ordered structure and defect energetics. An absence of rational understanding of the point defects present has led to poor reproducibility and uncontrolled conduction type. AgBiSe2 is a representative compound that suffers from poor reproducibility of thermoelectric properties, while the origins of its intrinsic n-type conductivity remain speculative. Here, it is demonstrated that cation disordering is facilitated by BiAg charged antisite defects in cubic AgBiSe2 which also act as a principal donor defect that greatly controls the electronic properties. Using density functional theory calculations and in situ Raman spectroscopy, how saturation annealing with selenium vapor can stabilize p-type conductivity in cubic AgBiSe2 alloyed with SnSe at high temperatures is elucidated. With stable and controlled hole concentration, a peak is observed in the weighted mobility and the density-of-states effective mass in AgBiSnSe3 , implying an increased valley degeneracy in this system. These findings corroborate the importance of considering the defect energetics for exploring the dopability of ternary thermoelectric chalcogenides and engineering electronic bands by controlling self-doping.

4.
Adv Mater ; 34(24): e2202255, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35412675

RESUMEN

Typically, conventional structure transitions occur from a low symmetry state to a higher symmetry state upon warming. In this work, an unexpected local symmetry breaking in the tetragonal diamondoid compound AgGaTe2 is reported, which, upon warming, evolves continuously from an undistorted ground state to a locally distorted state while retaining average crystallographic symmetry. This is a rare phenomenon previously referred to as emphanisis. This distorted state, caused by the weak sd3 orbital hybridization of tetrahedral Ag atoms, causes their displacement off the tetrahedron center and promotes a global distortion of the crystal structure resulting in strong acoustic-optical phonon scattering and an ultralow lattice thermal conductivity of 0.26 W m-1 K-1 at 850 K in AgGaTe2 . The findings explain the underlying reason for the unexpectedly low thermal conductivities of silver-based compounds compared to copper-based analogs and provide a guideline to suppressing heat transport in diamondoid and other materials.

5.
Mater Horiz ; 8(7): 1966-1975, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-34846473

RESUMEN

Defect energetics impact most thermal, electrical and ionic transport phenomena in crystalline compounds. The key to chemically controlling these properties through defect engineering is understanding the stability of (a) the defect and (b) the compound itself relative to competing phases at other compositions in the system. The stability of a compound is already widely understood in the community using intuitive diagrams of formation enthalpy (ΔHf) vs. composition, in which the stable phases form the 'convex-hull'. In this work, we re-write the expression of defect formation enthalpy (ΔHdef) in terms of the ΔHf of the compound and its defective structure. We show that ΔHdef for a point defect can be simply visualized as intercepts in a two-dimensional convex-hull plot regardless of the number of components in the system and choice of chemical conditions. By plotting ΔHf of the compound and its defects all together, this visualization scheme directly links defect energetics to the compositional phase stability of the compound. Hence, we simplify application level defect thermodynamics within a widely used visual tool understandable from basic materials science knowledge. Our work will be beneficial to a wide community of experimental chemists seeking to build an intuition for appropriate choice of chemical conditions for defect engineering.


Asunto(s)
Ciencia de los Materiales , Termodinámica
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA