Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 278
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 57(1): 52-67.e10, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38091995

RESUMEN

The regulation of polymorphonuclear leukocyte (PMN) function by mechanical forces encountered during their migration across restrictive endothelial cell junctions is not well understood. Using genetic, imaging, microfluidic, and in vivo approaches, we demonstrated that the mechanosensor Piezo1 in PMN plasmalemma induced spike-like Ca2+ signals during trans-endothelial migration. Mechanosensing increased the bactericidal function of PMN entering tissue. Mice in which Piezo1 in PMNs was genetically deleted were defective in clearing bacteria, and their lungs were predisposed to severe infection. Adoptive transfer of Piezo1-activated PMNs into the lungs of Pseudomonas aeruginosa-infected mice or exposing PMNs to defined mechanical forces in microfluidic systems improved bacterial clearance phenotype of PMNs. Piezo1 transduced the mechanical signals activated during transmigration to upregulate nicotinamide adenine dinucleotide phosphate (NADPH) oxidase 4, crucial for the increased PMN bactericidal activity. Thus, Piezo1 mechanosensing of increased PMN tension, while traversing the narrow endothelial adherens junctions, is a central mechanism activating the host-defense function of transmigrating PMNs.


Asunto(s)
Movimiento Celular , Pulmón , Mecanotransducción Celular , Neutrófilos , Animales , Ratones , Membrana Celular , Canales Iónicos/genética , Neutrófilos/metabolismo , Neutrófilos/microbiología , Actividad Bactericida de la Sangre/genética , Mecanotransducción Celular/genética
2.
Nat Immunol ; 21(11): 1430-1443, 2020 11.
Artículo en Inglés | MEDLINE | ID: mdl-32839607

RESUMEN

Macrophages demonstrate remarkable plasticity that is essential for host defense and tissue repair. The tissue niche imprints macrophage identity, phenotype and function. The role of vascular endothelial signals in tailoring the phenotype and function of tissue macrophages remains unknown. The lung is a highly vascularized organ and replete with a large population of resident macrophages. We found that, in response to inflammatory injury, lung endothelial cells release the Wnt signaling modulator Rspondin3, which activates ß-catenin signaling in lung interstitial macrophages and increases mitochondrial respiration by glutaminolysis. The generated tricarboxylic acid cycle intermediate α-ketoglutarate, in turn, serves as the cofactor for the epigenetic regulator TET2 to catalyze DNA hydroxymethylation. Notably, endothelial-specific deletion of Rspondin3 prevented the formation of anti-inflammatory interstitial macrophages in endotoxemic mice and induced unchecked severe inflammatory injury. Thus, the angiocrine-metabolic-epigenetic signaling axis specified by the endothelium is essential for reprogramming interstitial macrophages and dampening inflammatory injury.


Asunto(s)
Reprogramación Celular , Metabolismo Energético , Epigénesis Genética , Inflamación/etiología , Inflamación/metabolismo , Macrófagos/inmunología , Macrófagos/metabolismo , Trombospondinas/genética , Animales , Biomarcadores , Reprogramación Celular/genética , Reprogramación Celular/inmunología , Modelos Animales de Enfermedad , Susceptibilidad a Enfermedades , Técnica del Anticuerpo Fluorescente , Inflamación/patología , Ratones , Ratones Noqueados , Ratones Transgénicos , Trombospondinas/metabolismo
3.
Immunity ; 52(3): 475-486.e5, 2020 03 17.
Artículo en Inglés | MEDLINE | ID: mdl-32164878

RESUMEN

Cytosolic DNA acts as a universal danger-associated molecular pattern (DAMP) signal; however, the mechanisms of self-DNA release into the cytosol and its role in inflammatory tissue injury are not well understood. We found that the internalized bacterial endotoxin lipopolysaccharide (LPS) activated the pore-forming protein Gasdermin D, which formed mitochondrial pores and induced mitochondrial DNA (mtDNA) release into the cytosol of endothelial cells. mtDNA was recognized by the DNA sensor cGAS and generated the second messenger cGAMP, which suppressed endothelial cell proliferation by downregulating YAP1 signaling. This indicated that the surviving endothelial cells in the penumbrium of the inflammatory injury were compromised in their regenerative capacity. In an experimental model of inflammatory lung injury, deletion of cGas in mice restored endothelial regeneration. The results suggest that targeting the endothelial Gasdermin D activated cGAS-YAP signaling pathway could serve as a potential strategy for restoring endothelial function after inflammatory injury.


Asunto(s)
Proteínas Adaptadoras Transductoras de Señales/genética , Proteínas de Ciclo Celular/genética , Proliferación Celular/genética , ADN Mitocondrial/genética , Células Endoteliales/metabolismo , Inflamación/genética , Nucleotidiltransferasas/genética , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Animales , Proteínas de Ciclo Celular/metabolismo , Células Cultivadas , Citosol/metabolismo , ADN Mitocondrial/metabolismo , Células Endoteliales/citología , Células HEK293 , Humanos , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/genética , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/genética , Proteínas de la Membrana/metabolismo , Ratones Endogámicos C57BL , Ratones Noqueados , Nucleótidos Cíclicos/metabolismo , Nucleotidiltransferasas/metabolismo , Proteínas de Unión a Fosfato/genética , Proteínas de Unión a Fosfato/metabolismo , Transducción de Señal , Proteínas Señalizadoras YAP
4.
Immunity ; 49(1): 56-65.e4, 2018 07 17.
Artículo en Inglés | MEDLINE | ID: mdl-29958799

RESUMEN

Potassium (K+) efflux across the plasma membrane is thought to be an essential mechanism for ATP-induced NLRP3 inflammasome activation, yet the identity of the efflux channel has remained elusive. Here we identified the two-pore domain K+ channel (K2P) TWIK2 as the K+ efflux channel triggering NLRP3 inflammasome activation. Deletion of Kcnk6 (encoding TWIK2) prevented NLRP3 activation in macrophages and suppressed sepsis-induced lung inflammation. Adoptive transfer of Kcnk6-/- macrophages into mouse airways after macrophage depletion also prevented inflammatory lung injury. The K+ efflux channel TWIK2 in macrophages has a fundamental role in activating the NLRP3 inflammasome and consequently mediates inflammation, pointing to TWIK2 as a potential target for anti-inflammatory therapies.


Asunto(s)
Inflamasomas/metabolismo , Inflamación/fisiopatología , Macrófagos/metabolismo , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Canales de Potasio de Dominio Poro en Tándem/metabolismo , Adenosina Trifosfato/metabolismo , Adenosina Trifosfato/farmacología , Animales , Caspasa 1/deficiencia , Caspasa 1/metabolismo , Línea Celular , Inflamasomas/efectos de los fármacos , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Lesión Pulmonar/metabolismo , Lesión Pulmonar/fisiopatología , Macrófagos/trasplante , Ratones Endogámicos C57BL , Ratones Noqueados , Proteína con Dominio Pirina 3 de la Familia NLR/deficiencia , Canales de Potasio/efectos de los fármacos , Canales de Potasio/metabolismo , Canales de Potasio de Dominio Poro en Tándem/antagonistas & inhibidores , Canales de Potasio de Dominio Poro en Tándem/deficiencia , Quinina/farmacología , ARN Interferente Pequeño/farmacología , Receptores Purinérgicos P2X7/deficiencia , Receptores Purinérgicos P2X7/metabolismo , Sepsis/metabolismo , Sepsis/fisiopatología , Transducción de Señal/efectos de los fármacos
5.
Nat Immunol ; 15(3): 239-47, 2014 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-24487321

RESUMEN

Here we found that the transcription repressor DREAM bound to the promoter of the gene encoding A20 to repress expression of this deubiquitinase that suppresses inflammatory NF-κB signaling. DREAM-deficient mice displayed persistent and unchecked A20 expression in response to endotoxin. DREAM functioned by transcriptionally repressing A20 through binding to downstream regulatory elements (DREs). In contrast, binding of the transcription factor USF1 to the DRE-associated E-box domain in the gene encoding A20 activated its expression in response to inflammatory stimuli. Our studies define the critical opposing functions of DREAM and USF1 in inhibiting and inducing A20 expression, respectively, and thereby the strength of NF-κB signaling. Targeting of DREAM to induce USF1-mediated A20 expression is therefore a potential anti-inflammatory strategy for the treatment of diseases associated with unconstrained NF-κB activity, such as acute lung injury.


Asunto(s)
Proteínas de Unión al ADN/biosíntesis , Inflamación/metabolismo , Péptidos y Proteínas de Señalización Intracelular/biosíntesis , Proteínas de Interacción con los Canales Kv/metabolismo , Proteínas Represoras/metabolismo , Ubiquitina-Proteína Ligasas/biosíntesis , Factores Estimuladores hacia 5'/metabolismo , Lesión Pulmonar Aguda/genética , Lesión Pulmonar Aguda/metabolismo , Animales , Inmunoprecipitación de Cromatina , Cisteína Endopeptidasas , Proteínas de Unión al ADN/genética , Modelos Animales de Enfermedad , Regulación de la Expresión Génica/inmunología , Immunoblotting , Inflamación/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Proteína 3 Inducida por el Factor de Necrosis Tumoral alfa , Ubiquitina-Proteína Ligasas/genética
6.
Proc Natl Acad Sci U S A ; 119(15): e2121098119, 2022 04 12.
Artículo en Inglés | MEDLINE | ID: mdl-35377803

RESUMEN

The pathogenesis of lung fibrosis involves hyperactivation of innate and adaptive immune pathways that release inflammatory cytokines and growth factors such as tumor growth factor (TGF)ß1 and induce aberrant extracellular matrix protein production. During the genesis of pulmonary fibrosis, resident alveolar macrophages are replaced by a population of newly arrived monocyte-derived interstitial macrophages that subsequently transition into alveolar macrophages (Mo-AMs). These transitioning cells initiate fibrosis by releasing profibrotic cytokines and remodeling the matrix. Here, we describe a strategy for leveraging the up-regulation of the mannose receptor CD206 in interstitial macrophages and Mo-AM to treat lung fibrosis. We engineered mannosylated albumin nanoparticles, which were found to be internalized by fibrogenic CD206+ monocyte derived macrophages (Mo-Macs). Mannosylated albumin nanoparticles incorporating TGFß1 small-interfering RNA (siRNA) targeted the profibrotic subpopulation of CD206+ macrophages and prevented lung fibrosis. The findings point to the potential utility of mannosylated albumin nanoparticles in delivering TGFß-siRNA into CD206+ profibrotic macrophages as an antilung fibrosis strategy.


Asunto(s)
Linfotoxina-alfa , Macrófagos Alveolares , Nanopartículas , Fibrosis Pulmonar , ARN Interferente Pequeño , Animales , Bleomicina/farmacología , Modelos Animales de Enfermedad , Linfotoxina-alfa/genética , Macrófagos Alveolares/inmunología , Receptor de Manosa , Ratones , Ratones Endogámicos C57BL , Nanopartículas/administración & dosificación , Fibrosis Pulmonar/inducido químicamente , Fibrosis Pulmonar/inmunología , Fibrosis Pulmonar/terapia , ARN Interferente Pequeño/administración & dosificación , ARN Interferente Pequeño/genética
7.
Nat Immunol ; 13(5): 457-64, 2012 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-22447027

RESUMEN

To kill invading bacteria, neutrophils must interpret spatial cues, migrate and reach target sites. Although the initiation of chemotactic migration has been extensively studied, little is known about its termination. Here we found that two mitogen-activated protein kinases (MAPKs) had opposing roles in neutrophil trafficking. The extracellular signal-regulated kinase Erk potentiated activity of the G protein-coupled receptor kinase GRK2 and inhibited neutrophil migration, whereas the MAPK p38 acted as a noncanonical GRK that phosphorylated the formyl peptide receptor FPR1 and facilitated neutrophil migration by blocking GRK2 function. Therefore, the dynamic balance between Erk and p38 controlled neutrophil 'stop' and 'go' activity, which ensured that neutrophils reached their final destination as the first line of host defense.


Asunto(s)
Quimiotaxis de Leucocito , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Quinasa 2 del Receptor Acoplado a Proteína-G/metabolismo , Neutrófilos/inmunología , Receptores de Formil Péptido/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo , Animales , Quinasas MAP Reguladas por Señal Extracelular/antagonistas & inhibidores , Flavonoides/farmacología , Células HEK293 , Células HL-60 , Humanos , Imidazoles/farmacología , Ratones , Ratones Noqueados , N-Formilmetionina Leucil-Fenilalanina/metabolismo , Neutrófilos/efectos de los fármacos , Neutrófilos/enzimología , Piridinas/farmacología , Transducción de Señal/efectos de los fármacos , Transducción de Señal/fisiología , Proteínas Quinasas p38 Activadas por Mitógenos/antagonistas & inhibidores
8.
Crit Rev Microbiol ; : 1-20, 2024 Mar 12.
Artículo en Inglés | MEDLINE | ID: mdl-38470107

RESUMEN

Autophagy is a crucial immune defense mechanism that controls the survival and pathogenesis of M. tb by maintaining cell physiology during stress and pathogen attack. The E3-Ub ligases (PRKN, SMURF1, and NEDD4) and autophagy receptors (SQSTM1, TAX1BP1, CALCOCO2, OPTN, and NBR1) play key roles in this process. Galectins (LGALSs), which bind to sugars and are involved in identifying damaged cell membranes caused by intracellular pathogens such as M. tb, are essential. These include LGALS3, LGALS8, and LGALS9, which respond to endomembrane damage and regulate endomembrane damage caused by toxic chemicals, protein aggregates, and intracellular pathogens, including M. tb. They also activate selective autophagy and de novo endolysosome biogenesis. LGALS3, LGALS9, and LGALS8 interact with various components to activate autophagy and repair damage, while CGAS-STING1 plays a critical role in providing immunity against M. tb by activating selective autophagy and producing type I IFNs with antimycobacterial functions. STING1 activates cGAMP-dependent autophagy which provides immunity against various pathogens. Additionally, cytoplasmic surveillance pathways activated by ds-DNA, such as inflammasomes mediated by NLRP3 and AIM2 complexes, control M. tb. Modulation of E3-Ub ligases with small regulatory molecules of LGALSs and TRIM proteins could be a novel host-based therapeutic approach for controlling TB.

9.
Nat Chem Biol ; 18(3): 342-351, 2022 03.
Artículo en Inglés | MEDLINE | ID: mdl-35046611

RESUMEN

Vaccine hesitancy and emergence of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) variants of concern (VOCs) escaping vaccine-induced immune responses highlight the urgency for new COVID-19 therapeutics. Engineered angiotensin-converting enzyme 2 (ACE2) proteins with augmented binding affinities for SARS-CoV-2 spike (S) protein may prove to be especially efficacious against multiple variants. Using molecular dynamics simulations and functional assays, we show that three amino acid substitutions in an engineered soluble ACE2 protein markedly augmented the affinity for the S protein of the SARS-CoV-2 WA-1/2020 isolate and multiple VOCs: B.1.1.7 (Alpha), B.1.351 (Beta), P.1 (Gamma) and B.1.617.2 (Delta). In humanized K18-hACE2 mice infected with the SARS-CoV-2 WA-1/2020 or P.1 variant, prophylactic and therapeutic injections of soluble ACE22.v2.4-IgG1 prevented lung vascular injury and edema formation, essential features of CoV-2-induced SARS, and above all improved survival. These studies demonstrate broad efficacy in vivo of an engineered ACE2 decoy against SARS-CoV-2 variants in mice and point to its therapeutic potential.


Asunto(s)
Enzima Convertidora de Angiotensina 2/química , COVID-19/prevención & control , Ingeniería de Proteínas , SARS-CoV-2 , Secuencia de Aminoácidos , Sustitución de Aminoácidos , Animales , Antivirales , Descubrimiento de Drogas , Humanos , Lesión Pulmonar , Ratones , Ratones Transgénicos , Modelos Moleculares , Unión Proteica , Conformación Proteica , Síndrome de Dificultad Respiratoria , Síndrome Respiratorio Agudo Grave
10.
Physiology (Bethesda) ; 37(2): 88-100, 2022 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-34698589

RESUMEN

The lung is the major target organ of SARS-CoV-2 infection, which causes COVID-19. Here, we outline the multistep mechanisms of lung epithelial and endothelial injury induced by SARS-CoV-2: direct viral infection, chemokine/cytokine-mediated damage, and immune cell-mediated lung injury. Finally, we discuss the recent progress in terms of antiviral therapeutics as well as the development of anti-inflammatory or immunomodulatory therapeutic approaches. This review also provides a systematic overview of the models for studying SARS-CoV-2 infection and discusses how an understanding of mechanisms of lung injury will help identify potential targets for future drug development to mitigate lung injury.


Asunto(s)
COVID-19 , Lesión Pulmonar , Antivirales/uso terapéutico , COVID-19/complicaciones , Humanos , Pulmón , Lesión Pulmonar/tratamiento farmacológico , Lesión Pulmonar/virología , SARS-CoV-2
11.
Nat Immunol ; 13(1): 29-34, 2011 Nov 20.
Artículo en Inglés | MEDLINE | ID: mdl-22101731

RESUMEN

The NADPH oxidase activity of phagocytes and its generation of reactive oxygen species (ROS) is critical for host defense, but ROS overproduction can also lead to inflammation and tissue injury. Here we report that TRPM2, a nonselective and redox-sensitive cation channel, inhibited ROS production in phagocytic cells and prevented endotoxin-induced lung inflammation in mice. TRPM2-deficient mice challenged with endotoxin (lipopolysaccharide) had an enhanced inflammatory response and diminished survival relative to that of wild-type mice challenged with endotoxin. TRPM2 functioned by dampening NADPH oxidase-mediated ROS production through depolarization of the plasma membrane in phagocytes. As ROS also activate TRPM2, our findings establish a negative feedback mechanism for the inactivation of ROS production through inhibition of the membrane potential-sensitive NADPH oxidase.


Asunto(s)
Inflamación/metabolismo , Fagocitos/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Canales Catiónicos TRPM/metabolismo , Animales , Calcio/metabolismo , Inflamación/genética , Inflamación/patología , Enfermedades Pulmonares/genética , Enfermedades Pulmonares/metabolismo , Enfermedades Pulmonares/patología , Potenciales de la Membrana , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Oxidación-Reducción , Canales Catiónicos TRPM/deficiencia , Canales Catiónicos TRPM/genética
12.
J Med Virol ; 95(7): e28959, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37485696

RESUMEN

Severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) regulates autophagic flux by blocking the fusion of autophagosomes with lysosomes, causing the accumulation of membranous vesicles for replication. Multiple SARS-CoV-2 proteins regulate autophagy with significant roles attributed to ORF3a. Mechanistically, open reading frame 3a (ORF3a) forms a complex with UV radiation resistance associated, regulating the functions of the PIK3C3-1 and PIK3C3-2 lipid kinase complexes, thereby modulating autophagosome biogenesis. ORF3a sequesters VPS39 onto the late endosome/lysosome, inhibiting assembly of the soluble NSF attachement protein REceptor (SNARE) complex and preventing autolysosome formation. ORF3a promotes the interaction between BECN1 and HMGB1, inducing the assembly of PIK3CA kinases into the ER (endoplasmic reticulum) and activating reticulophagy, proinflammatory responses, and ER stress. ORF3a recruits BORCS6 and ARL8B to lysosomes, initiating the anterograde transport of the virus to the plasma membrane. ORF3a also activates the SNARE complex (STX4-SNAP23-VAMP7), inducing fusion of lysosomes with the plasma membrane for viral egress. These mechanistic details can provide multiple targets for inhibiting SARS-CoV-2 by developing host- or host-pathogen interface-based therapeutics.


Asunto(s)
Autofagia , SARS-CoV-2 , Humanos , COVID-19 , Proteínas SNARE
14.
Am J Respir Cell Mol Biol ; 66(1): 12-22, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34555309

RESUMEN

In vivo intravital imaging in animal models in the lung remains challenging owing to respiratory motion artifacts. Here we describe a novel intravital imaging approach based on the computer-vision stabilization algorithm, Computer-Vision Stabilized Intravital Imaging. This method corrects lung movements and deformations at submicron precision in respiring mouse lungs. The precision enables high-throughput quantitative analysis of intravital pulmonary polymorphonuclear neutrophil (PMN) dynamics in lungs. We quantified real-time PMN patrolling dynamics of microvessels in the basal state and PMN recruitment resulting from sequestration in a model of endotoxemia in mice. We focused on determining the marginated pool of PMNs in the lung. Direct visualization of marginated PMNs revealed that they are not static but highly dynamic and undergo repeated cycles of "catch and release." PMNs briefly arrest in larger diameter capillary junction (∼10 µm) and then squeeze into narrower, approximately 5-µm diameter vessels through PMN deformation. We also observed that the sequestered PMNs in lung microvessels lost their migratory capabilities in association with cell morphological change following prolonged endotoxemia. These observations underscore the value of direct visualization and quantitative analysis of PMN dynamics in lungs to study PMN physiology and pathophysiology and role in inflammatory lung injury.


Asunto(s)
Simulación por Computador , Microscopía Intravital , Pulmón/diagnóstico por imagen , Pulmón/patología , Neutrófilos/patología , Animales , Endotoxemia/diagnóstico por imagen , Pulmón/irrigación sanguínea , Ratones Endogámicos C57BL , Microvasos/diagnóstico por imagen , Microvasos/patología
15.
Am J Respir Cell Mol Biol ; 66(2): 183-195, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34706199

RESUMEN

TLR4 signaling via endotoxemia in macrophages promotes macrophage transition to the inflammatory phenotype through NLRP3 inflammasome activation. This transition event has the potential to trigger acute lung injury (ALI). However, relatively little is known about the regulation of NLRP3 and its role in the pathogenesis of ALI. Here we interrogated the signaling pathway activated by CD38, an ectoenzyme expressed in macrophages, in preventing ALI through suppressing NLRP3 activation. Wild-type and Cd38-knockout (Cd38-/-) mice were used to assess inflammatory lung injury, and isolated macrophages were used to delineate underlying TLR4 signaling pathway. We showed that CD38 suppressed TLR4 signaling in macrophages by inhibiting Bruton's tyrosine kinase (Btk) through the recruitment of Src homology-2 domain containing protein tyrosine phosphatase-2 (SHP2) and resulting in the dephosphorylation of activated Btk. Cd38-/- mice show enhanced lung polymorphonuclear leukocyte extravasation and severe lung injury. LPS- or polymicrobial sepsis-induced mortality in Cd38-/- mice were markedly augmented compared with wild types. CD38 in macrophages functioned by inhibiting Btk activation through activation of SHP2 and resulting dephosphorylation of Btk, and thereby preventing activation of downstream targets NF-κB and NLRP3. Cd38-/- macrophages displayed markedly increased activation of Btk, NF-κB, and NLRP3, whereas in vivo administration of the Btk inhibitor ibrutinib (a Food and Drug Administration-approved drug) prevented augmented TLR4-induced inflammatory lung injury seen in Cd38-/- mice. Our findings together show upregulation of CD38 activity and inhibition of Btk activation downstream of TLR4 activation as potential strategies to prevent endotoxemic ALI.


Asunto(s)
ADP-Ribosil Ciclasa 1/fisiología , Lesión Pulmonar Aguda/prevención & control , Adenina/análogos & derivados , Agammaglobulinemia Tirosina Quinasa/antagonistas & inhibidores , Endotoxemia/prevención & control , Inflamasomas/efectos de los fármacos , Macrófagos/efectos de los fármacos , Glicoproteínas de Membrana/fisiología , Piperidinas/farmacología , Lesión Pulmonar Aguda/etiología , Lesión Pulmonar Aguda/metabolismo , Lesión Pulmonar Aguda/patología , Adenina/farmacología , Agammaglobulinemia Tirosina Quinasa/genética , Agammaglobulinemia Tirosina Quinasa/metabolismo , Animales , Endotoxemia/etiología , Endotoxemia/metabolismo , Endotoxemia/patología , Femenino , Inflamasomas/metabolismo , Macrófagos/metabolismo , Macrófagos/patología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , FN-kappa B/genética , FN-kappa B/metabolismo , Transducción de Señal
16.
J Physiol ; 600(3): 509-530, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34921404

RESUMEN

Here we genetically and functionally addressed potential pathways of Notch signalling in mediating vascular regeneration in mouse models. We first used transgenic adult mice with either gain- or loss-of-function Notch signalling in vascular endothelial cells and monitored perfusion in the hindlimb following ischaemia induced by femoral artery ligation. Mice deficient in Notch signalling showed defective perfusion recovery and expansion of collateral arteries. Transcriptomics analysis of arterial endothelial cells in the Notch mutants identified the guidance factor Sema3g as a candidate gene mediating reperfusion downstream of Notch. Studies in the retinal circulation showed the central role of SEMA3G downstream of Notch signalling in the orderly regulation of vascular patterning. These studies in multiple vascular beds show the primacy of Notch signalling and downstream generation of guidance peptides such as SEMA3G in promoting well-ordered vascular regeneration. KEY POINTS: Notch signalling is a critical mediator of revascularization. Yet the cellular processes activated during recovery following vascular injury are incompletely understood. Here we used genetic and cellular approaches in two different vascular beds and cultured endothelial cells to address the generalizability of mechanisms. By utilizing a highly reproducible murine model of hindlimb ischaemia in transgenic mice in which Notch signalling was inhibited at the transcriptional level, we demonstrated the centrality of Notch signalling in perfusion recovery and revascularization. RNA-sequencing of Notch mutants identified class 3 Semaphorins regulated by Notch signalling as downstream targets. Studies in retinal vessels and endothelial cells showed an essential role of guidance peptide Sema3g as a modulator of angiogenesis and orderly vascular patterning. The Notch to Sema3g signalling axis functions as a feedback mechanism to sculpt the growing vasculature in multiple beds.


Asunto(s)
Semaforinas , Animales , Células Endoteliales/metabolismo , Miembro Posterior/irrigación sanguínea , Ratones , Neovascularización Fisiológica/fisiología , Receptor Notch1 , Receptores Notch/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Transducción de Señal
17.
Int J Med Microbiol ; 312(5): 151558, 2022 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-35842995

RESUMEN

Infections are known to cause tumours though more attributed to viruses. Strong epidemiological links suggest association between bacterial infections and cancers as exemplified by Helicobacter pylori and Salmonella spp. Infection with Mycobacterium tuberculosis (M. tb), the etiological agent of tuberculosis (TB), has been reported to predispose patients to lung cancers and possibly in other organs as well. While this etiopathogenesis warrant inclusion of M. tb in IARC's (International Agency for Research on Cancer) classified carcinogenic agents, the lack of well-defined literature and direct experimental studies have barred the research community from accepting the role of M. tb as a carcinogen. The background research, case studies, and experimental data extensively reviewed in Roy et al., 2021; provoke the debate for elucidating carcinogenic properties of M. tb. Moreover, proper, timely and correct diagnosis of both diseases (which often mimic each other) will save millions of lives that are misdiagnosed. In addition, use of Anti Tubercular therapy (ATT) in misdiagnosed non-TB patients contributes to drug resistance in population thereby severely impacting TB disease control measures. Research in this arena can further aid in saving billions of dollars by preventing the superfluous use of cancer drugs. In order to achieve these goals, it is imperative to identify the underlying mechanism of M. tb infection acting as major risk factor for cancer.


Asunto(s)
Helicobacter pylori , Mycobacterium tuberculosis , Neoplasias , Tuberculosis , Antituberculosos/uso terapéutico , Humanos , Neoplasias/complicaciones , Neoplasias/epidemiología , Tuberculosis/complicaciones , Tuberculosis/diagnóstico , Tuberculosis/epidemiología
19.
Proc Natl Acad Sci U S A ; 116(33): 16513-16518, 2019 08 13.
Artículo en Inglés | MEDLINE | ID: mdl-31363052

RESUMEN

Efferocytosis of apoptotic neutrophils (PMNs) by alveolar macrophages (AMФs) is vital for resolution of inflammation and tissue injury. Here, we investigated the role of AMФ polarization and expression of the efferocytic ligand Gas6 in restoring homeostasis. In the murine model of lipopolysaccharide (LPS)-induced acute lung injury (ALI), we observed augmented temporal generation of cytokines IL-4 and TSG6 in bronchoalveolar fluid (BALF). Interestingly, we also observed increased expression of antiinflammatory markers consistent with a phenotype shift in AMФs. In particular, AMФs expressed the efferocytic ligand Gas6. In vitro priming of bone marrow-derived macrophages (BMMФs) with IL-4 or TSG6 also induced MФ transition and expression of Gas6. TSG6- or IL-4-primed BMMФs induced efferocytosis of apoptotic PMNs compared with control BMMФs. Adoptive transfer of TSG6- or IL-4-primed BMMФs i.t. into LPS-challenged mice more rapidly and effectively cleared PMNs in lungs compared with control BMMФs. We demonstrated that expression of Gas6 during AMФ transition was due to activation of the transcription factor signal transducer and activator of transcription-6 (STAT6) downstream of IL-4 or TSG6 signaling. Adoptive transfer of Gas6-depleted BMMФs failed to clear PMNs in lungs following LPS challenge and mice showed severely defective resolution of lung injury. Thus, activation of STAT6-mediated Gas6 expression during macrophage phenotype transition resulting in efferocytosis of PMNs plays a crucial role in the resolution of inflammatory lung injury.


Asunto(s)
Apoptosis , Inflamación/metabolismo , Inflamación/patología , Péptidos y Proteínas de Señalización Intercelular/metabolismo , Macrófagos/metabolismo , Neutrófilos/metabolismo , Factor de Transcripción STAT6/metabolismo , Traslado Adoptivo , Animales , Moléculas de Adhesión Celular/metabolismo , Femenino , Interleucina-4/metabolismo , Lipopolisacáridos , Lesión Pulmonar/patología , Masculino , Ratones Endogámicos C57BL , Fagocitosis , Fenotipo , Alveolos Pulmonares/metabolismo , Alveolos Pulmonares/patología
20.
Proc Natl Acad Sci U S A ; 116(26): 12980-12985, 2019 06 25.
Artículo en Inglés | MEDLINE | ID: mdl-31186359

RESUMEN

Increased pulmonary microvessel pressure experienced in left heart failure, head trauma, or high altitude can lead to endothelial barrier disruption referred to as capillary "stress failure" that causes leakage of protein-rich plasma and pulmonary edema. However, little is known about vascular endothelial sensing and transduction of mechanical stimuli inducing endothelial barrier disruption. Piezo1, a mechanosensing ion channel expressed in endothelial cells (ECs), is activated by elevated pressure and other mechanical stimuli. Here, we demonstrate the involvement of Piezo1 in sensing increased lung microvessel pressure and mediating endothelial barrier disruption. Studies were made in mice in which Piezo1 was deleted conditionally in ECs (Piezo1iΔEC ), and lung microvessel pressure was increased either by raising left atrial pressure or by aortic constriction. We observed that lung endothelial barrier leakiness and edema induced by raising pulmonary microvessel pressure were abrogated in Piezo1iΔEC mice. Piezo1 signaled lung vascular hyperpermeability by promoting the internalization and degradation of the endothelial adherens junction (AJ) protein VE-cadherin. Breakdown of AJs was the result of activation of the calcium-dependent protease calpain and degradation of the AJ proteins VE-cadherin, ß-catenin, and p120-catenin. Deletion of Piezo1 in ECs or inhibition of calpain similarly prevented reduction in the AJ proteins. Thus, Piezo1 activation in ECs induced by elevated lung microvessel pressure mediates capillary stress failure and edema formation secondary to calpain-induced disruption of VE-cadherin adhesion. Inhibiting Piezo1 signaling may be a useful strategy to limit lung capillary stress failure injury in response to elevated vascular pressures.


Asunto(s)
Endotelio Vascular/patología , Canales Iónicos/metabolismo , Microvasos/patología , Edema Pulmonar/patología , Insuficiencia Respiratoria/patología , Uniones Adherentes/patología , Uniones Adherentes/ultraestructura , Animales , Antígenos CD/genética , Antígenos CD/metabolismo , Presión Arterial/fisiología , Presión Sanguínea/fisiología , Cadherinas/genética , Cadherinas/metabolismo , Permeabilidad Capilar/efectos de los fármacos , Células Cultivadas , Modelos Animales de Enfermedad , Células Endoteliales/citología , Células Endoteliales/patología , Células Endoteliales/ultraestructura , Endotelio Vascular/citología , Endotelio Vascular/ultraestructura , Femenino , Técnicas de Sustitución del Gen , Humanos , Presión Hidrostática/efectos adversos , Péptidos y Proteínas de Señalización Intercelular/farmacología , Canales Iónicos/antagonistas & inhibidores , Canales Iónicos/genética , Pulmón/irrigación sanguínea , Masculino , Mecanotransducción Celular , Ratones , Ratones Noqueados , Microscopía Electrónica de Transmisión , Microvasos/citología , Microvasos/efectos de los fármacos , Cultivo Primario de Células , Edema Pulmonar/etiología , Edema Pulmonar/fisiopatología , Insuficiencia Respiratoria/etiología , Insuficiencia Respiratoria/prevención & control , Venenos de Araña/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA