Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
J Appl Clin Med Phys ; 22(8): 6-15, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34318570

RESUMEN

PURPOSE: Medical physics staffing models require periodic review due to the rapid evolution of technology and clinical techniques in radiation oncology. We present an update to a grid-based physics staffing algorithm for radiation oncology (originally published in 2012) that has been widely used in Canada over the last decade. MATERIALS AND METHODS: The physics staffing algorithm structure was modified to improve the clarity and consistency of input data. We collected information on clinical procedures, equipment inventory, and teaching activities from 15 radiation treatment centers in the province of Ontario from April 1, 2018, to March 31, 2019. Using these data sets, the algorithm's weighting parameters were adjusted to align the prediction of full-time equivalent (FTE) personnel with actual staffing levels in Ontario. The algorithm computes FTE estimates for medical physicists, physics assistants, engineering (electrical and mechanical), and information technology (IT) support. The performance of the algorithm was also tested in eight Canadian cancer centers outside of Ontario. RESULTS: The mean difference between the algorithm and actual staffing for the 23 Canadian cancer centers did not exceed 0.5 FTE for any staffing group. The results were slightly better in Ontario than in other provinces, as expected since the algorithm was optimized using Ontario data. There was a linear correlation between the algorithm predictions and the number of annual-treated cases for physicists, and physicists plus physics assistants. For other staff categories, the algorithm weighting parameters were not significantly altered, except for a reduction in mechanical engineering staff. Comparison with other published models suggests that the updated algorithm should be considered as a minimum recommended staffing level for the clinical support of radiation oncology programs. CONCLUSIONS: We support the use of grid-based physics staffing algorithms that account for clinical workload with flexibility to adapt to local conditions with variable academic and research demands.


Asunto(s)
Oncología por Radiación , Algoritmos , Canadá , Física Sanitaria , Humanos , Física , Recursos Humanos
2.
J Appl Clin Med Phys ; 19(2): 44-47, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29479804

RESUMEN

The Canadian Organization of Medical Physicists (COMP), in close partnership with the Canadian Partnership for Quality Radiotherapy (CPQR) has developed a series of Technical Quality Control (TQC) guidelines for radiation treatment equipment. These guidelines outline the performance objectives that equipment should meet in order to ensure an acceptable level of radiation treatment quality. The TQC guidelines have been rigorously reviewed and field tested in a variety of Canadian radiation treatment facilities. The development process enables rapid review and update to keep the guidelines current with changes in technology. This announcement provides an introduction to the guidelines, describing their scope and how they should be interpreted. Details of recommended tests can be found in separate, equipment specific TQC guidelines published in the JACMP (COMP Reports), or the website of the Canadian Partnership for Quality Radiotherapy (www.cpqr.ca).


Asunto(s)
Física Sanitaria , Errores Médicos/prevención & control , Guías de Práctica Clínica como Asunto/normas , Control de Calidad , Oncología por Radiación/organización & administración , Oncología por Radiación/normas , Informe de Investigación , Canadá , Humanos
3.
J Appl Clin Med Phys ; 17(6): 3-15, 2016 11 08.
Artículo en Inglés | MEDLINE | ID: mdl-27929477

RESUMEN

A close partnership between the Canadian Partnership for Quality Radiotherapy (CPQR) and the Canadian Organization of Medical Physicist's (COMP) Quality Assurance and Radiation Safety Advisory Committee (QARSAC) has resulted in the development of a suite of Technical Quality Control (TQC) guidelines for radiation treatment equipment; they outline specific performance objectives and criteria that equipment should meet in order to assure an acceptable level of radiation treatment quality. The adopted framework for the development and maintenance of the TQCs ensures the guidelines incorporate input from the medical physics com-munity during development, measures the workload required to perform the QC tests outlined in each TQC, and remain relevant (i.e., "living documents") through subsequent planned reviews and updates. The framework includes consolidation of existing guidelines and/or literature by expert reviewers, structured stages of public review, external field-testing, and ratification by COMP. This TQC develop-ment framework is a cross-country initiative that allows for rapid development of robust, community-driven living guideline documents that are owned by the com-munity and reviewed to keep relevant in a rapidly evolving technical environment. Community engagement and uptake survey data shows 70% of Canadian centers are part of this process and that the data in the guideline documents reflect, and are influencing, the way Canadian radiation treatment centers run their technical quality control programs. For a medium-sized center comprising six linear accelerators and a comprehensive brachytherapy program, we evaluate the physics workload to 1.5 full-time equivalent physicists per year to complete all QC tests listed in this suite.


Asunto(s)
Atención a la Salud/normas , Aceleradores de Partículas/instrumentación , Guías de Práctica Clínica como Asunto/normas , Control de Calidad , Radioterapia/instrumentación , Radioterapia/normas , Humanos
5.
Phys Med Biol ; 54(10): 3173-83, 2009 May 21.
Artículo en Inglés | MEDLINE | ID: mdl-19420428

RESUMEN

The purpose of this work was to investigate the influence of a new transmission detector on 6 MV x-ray beam properties. The device, COMPASS (IBA Dosimetry, Germany), contains 1600 plane parallel ionization chambers with a detector spacing of 6.5 mm and an active volume of 0.02 cm3. Surface dose measurements were carried out using a Markus chamber and radiochromic film for a range of field sizes and source-to-surface distances (SSDs). The surface dose and dose in the build-up region for COMPASS fields were compared to open fields. For moderately narrow beam geometric conditions, the increase in surface dose was small. For the largest field size investigated (20x20 cm2) at a 90 cm SSD, the surface dose with the detector was 34.9% versus 26.8% in the open field. However, the increase in surface dose in COMPASS fields was less than that observed with a standard block tray in the field (38.7% in the above example). It was found that beyond dmax, the difference in relative dose (profiles and PDDs) between open and COMPASS fields was insignificant. The mean transmission factor of the detector was 0.967 (standard deviation=0.002) measured over a range of field sizes from 3x3 to 20x20 cm2 at SSDs from 70 cm to 90 cm. In summary, the transmission detector was found to increase the relative dose in the buildup region but had a negligible effect on the beam parameters beyond dmax.


Asunto(s)
Algoritmos , Radiometría/instrumentación , Radioterapia Conformacional/instrumentación , Radioterapia de Alta Energía/instrumentación , Transductores , Diseño Asistido por Computadora , Diseño de Equipo , Análisis de Falla de Equipo , Dosificación Radioterapéutica , Reproducibilidad de los Resultados , Sensibilidad y Especificidad , Rayos X
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA