Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 91
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Cell ; 184(13): 3394-3409.e20, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-34077752

RESUMEN

The human fetal immune system begins to develop early during gestation; however, factors responsible for fetal immune-priming remain elusive. We explored potential exposure to microbial agents in utero and their contribution toward activation of memory T cells in fetal tissues. We profiled microbes across fetal organs using 16S rRNA gene sequencing and detected low but consistent microbial signal in fetal gut, skin, placenta, and lungs in the 2nd trimester of gestation. We identified several live bacterial strains including Staphylococcus and Lactobacillus in fetal tissues, which induced in vitro activation of memory T cells in fetal mesenteric lymph node, supporting the role of microbial exposure in fetal immune-priming. Finally, using SEM and RNA-ISH, we visualized discrete localization of bacteria-like structures and eubacterial-RNA within 14th weeks fetal gut lumen. These findings indicate selective presence of live microbes in fetal organs during the 2nd trimester of gestation and have broader implications toward the establishment of immune competency and priming before birth.


Asunto(s)
Bacterias/metabolismo , Desarrollo Embrionario , Feto/citología , Feto/microbiología , Leucocitos/citología , Adulto , Bacterias/genética , Bacterias/ultraestructura , Proliferación Celular , Células Dendríticas/metabolismo , Femenino , Feto/ultraestructura , Tracto Gastrointestinal/embriología , Tracto Gastrointestinal/ultraestructura , Humanos , Memoria Inmunológica , Activación de Linfocitos/inmunología , Viabilidad Microbiana , Embarazo , Segundo Trimestre del Embarazo , ARN Bacteriano/genética , ARN Ribosómico 16S/genética , Reproducibilidad de los Resultados , Linfocitos T/citología
2.
Immunity ; 55(8): 1448-1465.e6, 2022 08 09.
Artículo en Inglés | MEDLINE | ID: mdl-35931085

RESUMEN

Brain macrophage populations include parenchymal microglia, border-associated macrophages, and recruited monocyte-derived cells; together, they control brain development and homeostasis but are also implicated in aging pathogenesis and neurodegeneration. The phenotypes, localization, and functions of each population in different contexts have yet to be resolved. We generated a murine brain myeloid scRNA-seq integration to systematically delineate brain macrophage populations. We show that the previously identified disease-associated microglia (DAM) population detected in murine Alzheimer's disease models actually comprises two ontogenetically and functionally distinct cell lineages: embryonically derived triggering receptor expressed on myeloid cells 2 (TREM2)-dependent DAM expressing a neuroprotective signature and monocyte-derived TREM2-expressing disease inflammatory macrophages (DIMs) accumulating in the brain during aging. These two distinct populations appear to also be conserved in the human brain. Herein, we generate an ontogeny-resolved model of brain myeloid cell heterogeneity in development, homeostasis, and disease and identify cellular targets for the treatment of neurodegeneration.


Asunto(s)
Enfermedad de Alzheimer , Microglía , Envejecimiento , Enfermedad de Alzheimer/genética , Animales , Encéfalo/patología , Humanos , Macrófagos/patología , Glicoproteínas de Membrana , Ratones , Microglía/patología , Receptores Inmunológicos
4.
Immunity ; 54(9): 2101-2116.e6, 2021 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-34469775

RESUMEN

Tissue macrophages are immune cells whose phenotypes and functions are dictated by origin and niches. However, tissues are complex environments, and macrophage heterogeneity within the same organ has been overlooked so far. Here, we used high-dimensional approaches to characterize macrophage populations in the murine liver. We identified two distinct populations among embryonically derived Kupffer cells (KCs) sharing a core signature while differentially expressing numerous genes and proteins: a major CD206loESAM- population (KC1) and a minor CD206hiESAM+ population (KC2). KC2 expressed genes involved in metabolic processes, including fatty acid metabolism both in steady-state and in diet-induced obesity and hepatic steatosis. Functional characterization by depletion of KC2 or targeted silencing of the fatty acid transporter Cd36 highlighted a crucial contribution of KC2 in the liver oxidative stress associated with obesity. In summary, our study reveals that KCs are more heterogeneous than anticipated, notably describing a subpopulation wired with metabolic functions.


Asunto(s)
Antígenos CD36/metabolismo , Macrófagos del Hígado/metabolismo , Hígado/metabolismo , Obesidad/metabolismo , Estrés Oxidativo/fisiología , Animales , Ratones
5.
Nature ; 623(7986): 397-405, 2023 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-37914940

RESUMEN

Microglia are specialized brain-resident macrophages that arise from primitive macrophages colonizing the embryonic brain1. Microglia contribute to multiple aspects of brain development, but their precise roles in the early human brain remain poorly understood owing to limited access to relevant tissues2-6. The generation of brain organoids from human induced pluripotent stem cells recapitulates some key features of human embryonic brain development7-10. However, current approaches do not incorporate microglia or address their role in organoid maturation11-21. Here we generated microglia-sufficient brain organoids by coculturing brain organoids with primitive-like macrophages generated from the same human induced pluripotent stem cells (iMac)22. In organoid cocultures, iMac differentiated into cells with microglia-like phenotypes and functions (iMicro) and modulated neuronal progenitor cell (NPC) differentiation, limiting NPC proliferation and promoting axonogenesis. Mechanistically, iMicro contained high levels of PLIN2+ lipid droplets that exported cholesterol and its esters, which were taken up by NPCs in the organoids. We also detected PLIN2+ lipid droplet-loaded microglia in mouse and human embryonic brains. Overall, our approach substantially advances current human brain organoid approaches by incorporating microglial cells, as illustrated by the discovery of a key pathway of lipid-mediated crosstalk between microglia and NPCs that leads to improved neurogenesis.


Asunto(s)
Encéfalo , Colesterol , Células Madre Pluripotentes Inducidas , Microglía , Células-Madre Neurales , Neurogénesis , Organoides , Animales , Humanos , Ratones , Encéfalo/citología , Encéfalo/metabolismo , Diferenciación Celular , Células Madre Pluripotentes Inducidas/citología , Microglía/citología , Microglía/metabolismo , Organoides/citología , Organoides/metabolismo , Colesterol/metabolismo , Células-Madre Neurales/citología , Células-Madre Neurales/metabolismo , Axones , Proliferación Celular , Ésteres/metabolismo , Gotas Lipídicas/metabolismo
6.
Immunity ; 50(4): 1069-1083.e8, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30926233

RESUMEN

Skin conventional dendritic cells (cDCs) exist as two distinct subsets, cDC1s and cDC2s, which maintain the balance of immunity to pathogens and tolerance to self and microbiota. Here, we examined the roles of dermal cDC1s and cDC2s during bacterial infection, notably Propionibacterium acnes (P. acnes). cDC1s, but not cDC2s, regulated the magnitude of the immune response to P. acnes in the murine dermis by controlling neutrophil recruitment to the inflamed site and survival and function therein. Single-cell mRNA sequencing revealed that this regulation relied on secretion of the cytokine vascular endothelial growth factor α (VEGF-α) by a minor subset of activated EpCAM+CD59+Ly-6D+ cDC1s. Neutrophil recruitment by dermal cDC1s was also observed during S. aureus, bacillus Calmette-Guérin (BCG), or E. coli infection, as well as in a model of bacterial insult in human skin. Thus, skin cDC1s are essential regulators of the innate response in cutaneous immunity and have roles beyond classical antigen presentation.


Asunto(s)
Acné Vulgar/inmunología , Células Dendríticas/clasificación , Infecciones por Bacterias Grampositivas/inmunología , Infiltración Neutrófila/inmunología , Factor A de Crecimiento Endotelial Vascular/inmunología , Acné Vulgar/microbiología , Animales , Presentación de Antígeno , Quimiotaxis de Leucocito/inmunología , Células Dendríticas/inmunología , Oído Externo , Regulación de la Expresión Génica , Ontología de Genes , Infecciones por Bacterias Grampositivas/microbiología , Humanos , Inyecciones Intradérmicas , Ratones , Ratones Endogámicos C57BL , Neutrófilos/metabolismo , Propionibacterium acnes , ARN Mensajero/biosíntesis , Análisis de la Célula Individual , Factor A de Crecimiento Endotelial Vascular/biosíntesis , Factor A de Crecimiento Endotelial Vascular/genética
7.
Immunity ; 51(3): 573-589.e8, 2019 09 17.
Artículo en Inglés | MEDLINE | ID: mdl-31474513

RESUMEN

Human mononuclear phagocytes comprise phenotypically and functionally overlapping subsets of dendritic cells (DCs) and monocytes, but the extent of their heterogeneity and distinct markers for subset identification remains elusive. By integrating high-dimensional single-cell protein and RNA expression data, we identified distinct markers to delineate monocytes from conventional DC2 (cDC2s). Using CD88 and CD89 for monocytes and HLA-DQ and FcεRIα for cDC2s allowed for their specific identification in blood and tissues. We also showed that cDC2s could be subdivided into phenotypically and functionally distinct subsets based on CD5, CD163, and CD14 expression, including a distinct subset of circulating inflammatory CD5-CD163+CD14+ cells related to previously defined DC3s. These inflammatory DC3s were expanded in systemic lupus erythematosus patients and correlated with disease activity. These findings further unravel the heterogeneity of DC subpopulations in health and disease and may pave the way for the identification of specific DC subset-targeting therapies.


Asunto(s)
Biomarcadores/sangre , Células Dendríticas/inmunología , Inflamación/sangre , Inflamación/inmunología , Leucocitos Mononucleares/inmunología , Fagocitos/inmunología , Antígenos CD/sangre , Antígenos CD/inmunología , Células Cultivadas , Citometría de Flujo/métodos , Humanos , Lupus Eritematoso Sistémico/sangre , Lupus Eritematoso Sistémico/inmunología , Monocitos/inmunología , Fenotipo , Análisis de la Célula Individual
8.
Nat Immunol ; 16(7): 718-28, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-26054720

RESUMEN

Mouse conventional dendritic cells (cDCs) can be classified into two functionally distinct lineages: the CD8α(+) (CD103(+)) cDC1 lineage, and the CD11b(+) cDC2 lineage. cDCs arise from a cascade of bone marrow (BM) DC-committed progenitor cells that include the common DC progenitors (CDPs) and pre-DCs, which exit the BM and seed peripheral tissues before differentiating locally into mature cDCs. Where and when commitment to the cDC1 or cDC2 lineage occurs remains poorly understood. Here we found that transcriptional signatures of the cDC1 and cDC2 lineages became evident at the single-cell level from the CDP stage. We also identified Siglec-H and Ly6C as lineage markers that distinguished pre-DC subpopulations committed to the cDC1 lineage (Siglec-H(-)Ly6C(-) pre-DCs) or cDC2 lineage (Siglec-H(-)Ly6C(+) pre-DCs). Our results indicate that commitment to the cDC1 or cDC2 lineage occurs in the BM and not in the periphery.


Asunto(s)
Células de la Médula Ósea/inmunología , Linaje de la Célula/inmunología , Células Dendríticas/inmunología , Células Madre/inmunología , Animales , Antígenos CD/inmunología , Antígenos CD/metabolismo , Antígenos Ly/genética , Antígenos Ly/inmunología , Antígenos Ly/metabolismo , Células de la Médula Ósea/metabolismo , Antígeno CD11b/inmunología , Antígeno CD11b/metabolismo , Antígenos CD8/inmunología , Antígenos CD8/metabolismo , Linaje de la Célula/genética , Células Cultivadas , Análisis por Conglomerados , Células Dendríticas/metabolismo , Células Dendríticas/ultraestructura , Citometría de Flujo , Cadenas alfa de Integrinas/inmunología , Cadenas alfa de Integrinas/metabolismo , Lectinas/genética , Lectinas/inmunología , Lectinas/metabolismo , Ratones Endogámicos C57BL , Ratones Transgénicos , Microscopía Electrónica de Rastreo , Análisis de Secuencia por Matrices de Oligonucleótidos , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/inmunología , Receptores de Superficie Celular/metabolismo , Análisis de la Célula Individual/métodos , Células Madre/metabolismo , Transcriptoma/genética , Transcriptoma/inmunología
9.
Immunity ; 47(1): 183-198.e6, 2017 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-28723550

RESUMEN

Tissue macrophages arise during embryogenesis from yolk-sac (YS) progenitors that give rise to primitive YS macrophages. Until recently, it has been impossible to isolate or derive sufficient numbers of YS-derived macrophages for further study, but data now suggest that induced pluripotent stem cells (iPSCs) can be driven to undergo a process reminiscent of YS-hematopoiesis in vitro. We asked whether iPSC-derived primitive macrophages (iMacs) can terminally differentiate into specialized macrophages with the help of growth factors and organ-specific cues. Co-culturing human or murine iMacs with iPSC-derived neurons promoted differentiation into microglia-like cells in vitro. Furthermore, murine iMacs differentiated in vivo into microglia after injection into the brain and into functional alveolar macrophages after engraftment in the lung. Finally, iPSCs from a patient with familial Mediterranean fever differentiated into iMacs with pro-inflammatory characteristics, mimicking the disease phenotype. Altogether, iMacs constitute a source of tissue-resident macrophage precursors that can be used for biological, pathophysiological, and therapeutic studies.


Asunto(s)
Técnicas de Cultivo de Célula/métodos , Hematopoyesis , Macrófagos/fisiología , Neuronas/fisiología , Células Madre Pluripotentes/fisiología , Animales , Diferenciación Celular , Células Cultivadas , Embrión de Mamíferos , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Neurogénesis
10.
J Infect Dis ; 230(3): e737-e742, 2024 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-38441336

RESUMEN

We previously described a novel Plasmodium vivax invasion mechanism into human reticulocytes via the PvRBP2a-CD98 receptor-ligand pair. Using linear epitope mapping, we assessed the PvRBP2a epitopes involved in CD98 binding and recognized by antibodies from patients who were infected. We identified 2 epitope clusters mediating PvRBP2a-CD98 interaction. Cluster B (PvRBP2a431-448, TAALKEKGKLLANLYNKL) was the target of antibody responses in humans infected by P vivax. Peptides from each cluster were able to prevent live parasite invasion of human reticulocytes. These results provide new insights for development of a malaria blood-stage vaccine against P vivax.


Asunto(s)
Anticuerpos Antiprotozoarios , Mapeo Epitopo , Malaria Vivax , Plasmodium vivax , Proteínas Protozoarias , Reticulocitos , Humanos , Plasmodium vivax/inmunología , Proteínas Protozoarias/inmunología , Proteínas Protozoarias/metabolismo , Proteínas Protozoarias/genética , Malaria Vivax/inmunología , Malaria Vivax/parasitología , Reticulocitos/parasitología , Reticulocitos/metabolismo , Reticulocitos/inmunología , Anticuerpos Antiprotozoarios/inmunología , Antígenos de Protozoos/inmunología , Antígenos de Protozoos/metabolismo , Epítopos/inmunología , Vacunas contra la Malaria/inmunología , Proteínas de la Membrana
12.
Int J Mol Sci ; 25(13)2024 Jun 26.
Artículo en Inglés | MEDLINE | ID: mdl-39000118

RESUMEN

Multidrug-resistant P. aeruginosa infections pose a serious public health threat due to the rise in antimicrobial resistance. Phage therapy has emerged as a promising alternative. However, P. aeruginosa has evolved various mechanisms to thwart phage attacks, making it crucial to decipher these resistance mechanisms to develop effective therapeutic strategies. In this study, we conducted a forward-genetic screen of the P. aeruginosa PA14 non-redundant transposon library (PA14NR) to identify dominant-negative mutants displaying phage-resistant phenotypes. Our screening process revealed 78 mutants capable of thriving in the presence of phages, with 23 of them carrying insertions in genes associated with membrane composition. Six mutants exhibited total resistance to phage infection. Transposon insertions were found in genes known to be linked to phage-resistance such as galU and a glycosyl transferase gene, as well as novel genes such as mexB, lasB, and two hypothetical proteins. Functional experiments demonstrated that these genes played pivotal roles in phage adsorption and biofilm formation, indicating that altering the bacterial membrane composition commonly leads to phage resistance in P. aeruginosa. Importantly, these mutants displayed phenotypic trade-offs, as their resistance to phages inversely affected antibiotic resistance and hindered biofilm formation, shedding light on the complex interplay between phage susceptibility and bacterial fitness. This study highlights the potential of transposon mutant libraries and forward-genetic screens in identifying key genes involved in phage-host interactions and resistance mechanisms. These findings support the development of innovative strategies for combating antibiotic-resistant pathogens.


Asunto(s)
Elementos Transponibles de ADN , Biblioteca de Genes , Mutación , Pseudomonas aeruginosa , Pseudomonas aeruginosa/virología , Pseudomonas aeruginosa/genética , Elementos Transponibles de ADN/genética , Biopelículas/crecimiento & desarrollo , Bacteriófagos/genética , Bacteriófagos/fisiología
13.
Cell Mol Life Sci ; 79(5): 245, 2022 Apr 18.
Artículo en Inglés | MEDLINE | ID: mdl-35435504

RESUMEN

BACKGROUND: Blastocystis is a common gut protistan parasite in humans and animals worldwide, but its interrelationship with the host gut microbiota and mucosal immune responses remains poorly understood. Different murine models of Blastocystis colonization were used to examine the effect of a common Blastocystis subtype (ST4) on host gut microbial community and adaptive immune system. RESULTS: Blastocystis ST4-colonized normal healthy mice and Rag1-/- mice asymptomatically and was able to alter the microbial community composition, mainly leading to increases in the proportion of Clostridia vadinBB60 group and Lachnospiraceae NK4A136 group, respectively. Blastocystis ST4 colonization promoted T helper 2 (Th2) response defined by interleukin (IL)-5 and IL-13 cytokine production, and T regulatory (Treg) induction from colonic lamina propria in normal healthy mice. Additionally, we observed that Blastocystis ST4 colonization can maintain the stability of bacterial community composition and induce Th2 and Treg immune responses to promote faster recovery from experimentally induced colitis. Furthermore, fecal microbiota transplantation of Blastocystis ST4-altered gut microbiome to colitis mice reduced the severity of colitis, which was associated with increased production of short-chain fat acids (SCFAs) and anti-inflammatory cytokine IL-10. CONCLUSIONS: The data confirm our hypothesis that Blastocystis ST4 is a beneficial commensal, and the beneficial effects of Blastocystis ST4 colonization is mediated through modulating of the host gut bacterial composition, SCFAs production, and Th2 and Treg responses in different murine colonization models.


Asunto(s)
Blastocystis , Colitis , Microbioma Gastrointestinal , Animales , Bacterias , Colitis/inducido químicamente , Citocinas , Modelos Animales de Enfermedad , Inmunidad , Ratones , Ratones Endogámicos C57BL
14.
Immunity ; 38(5): 970-83, 2013 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-23706669

RESUMEN

Mouse and human dendritic cells (DCs) are composed of functionally specialized subsets, but precise interspecies correlation is currently incomplete. Here, we showed that murine lung and gut lamina propria CD11b+ DC populations were comprised of two subsets: FLT3- and IRF4-dependent CD24(+)CD64(-) DCs and contaminating CSF-1R-dependent CD24(-)CD64(+) macrophages. Functionally, loss of CD24(+)CD11b(+) DCs abrogated CD4+ T cell-mediated interleukin-17 (IL-17) production in steady state and after Aspergillus fumigatus challenge. Human CD1c+ DCs, the equivalent of murine CD24(+)CD11b(+) DCs, also expressed IRF4, secreted IL-23, and promoted T helper 17 cell responses. Our data revealed heterogeneity in the mouse CD11b+ DC compartment and identifed mucosal tissues IRF4-expressing DCs specialized in instructing IL-17 responses in both mouse and human. The demonstration of mouse and human DC subsets specialized in driving IL-17 responses highlights the conservation of key immune functions across species and will facilitate the translation of mouse in vivo findings to advance DC-based clinical therapies.


Asunto(s)
Aspergillus fumigatus/inmunología , Células Dendríticas/metabolismo , Factores Reguladores del Interferón/metabolismo , Interleucina-17/metabolismo , Células Th17/metabolismo , Animales , Antígeno CD11b/metabolismo , Antígeno CD24/metabolismo , Diferenciación Celular/inmunología , Células Dendríticas/inmunología , Humanos , Interleucina-17/biosíntesis , Interleucina-23/metabolismo , Mucosa Intestinal/citología , Mucosa Intestinal/inmunología , Macrófagos/metabolismo , Ratones , Receptores de IgG/metabolismo , Mucosa Respiratoria/citología , Mucosa Respiratoria/inmunología , Tirosina Quinasa 3 Similar a fms/metabolismo
15.
Immunity ; 37(1): 60-73, 2012 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-22795876

RESUMEN

Dendritic cell (DC)-mediated cross-presentation of exogenous antigens acquired in the periphery is critical for the initiation of CD8(+) T cell responses. Several DC subsets are described in human tissues but migratory cross-presenting DCs have not been isolated, despite their potential importance in immunity to pathogens, vaccines, and tumors and tolerance to self. Here, we identified a CD141(hi) DC present in human interstitial dermis, liver, and lung that was distinct from the majority of CD1c(+) and CD14(+) tissue DCs and superior at cross-presenting soluble antigens. Cutaneous CD141(hi) DCs were closely related to blood CD141(+) DCs, and migratory counterparts were found among skin-draining lymph node DCs. Comparative transcriptomic analysis with mouse showed tissue DC subsets to be conserved between species and permitted close alignment of human and mouse DC subsets. These studies inform the rational design of targeted immunotherapies and facilitate translation of mouse functional DC biology to the human setting.


Asunto(s)
Antígenos CD/metabolismo , Reactividad Cruzada/inmunología , Células Dendríticas/inmunología , Células Dendríticas/metabolismo , Cadenas alfa de Integrinas/metabolismo , Animales , Antígenos/inmunología , Movimiento Celular/inmunología , Quimiocina CXCL10/biosíntesis , Perfilación de la Expresión Génica , Humanos , Inmunofenotipificación , Células de Langerhans/inmunología , Células de Langerhans/metabolismo , Ganglios Linfáticos/inmunología , Ganglios Linfáticos/metabolismo , Ratones , Piel/inmunología , Transcriptoma , Factor de Necrosis Tumoral alfa/biosíntesis
16.
BMC Infect Dis ; 21(1): 856, 2021 Aug 21.
Artículo en Inglés | MEDLINE | ID: mdl-34418990

RESUMEN

BACKGROUND: In a previous study, using a molecular approach, we reported the presence of P. vivax in Namibia. Here, we have extended our investigation to the Duffy antigen genetic profile of individuals of the same cohort with and without Plasmodium infections. METHODS: Participants with P. vivax (n = 3), P. falciparum (n = 23) mono-infections and co-infections of P. vivax/P. falciparum (n = 4), and P. falciparum/P. ovale (n = 3) were selected from seven regions. Participants with similar age but without any Plasmodium infections (n = 47) were also selected from all the regions. Duffy allelic profile was examined using standard PCR followed by sequencing of amplified products. Sequenced samples were also examined for the presence or absence of G125A mutation in codon 42, exon 2. RESULTS: All individuals tested carried the - 67 T > C mutation. However, while all P. vivax infected participants carried the c.G125A mutation, 7/28 P. falciparum infected participants and 9/41 of uninfected participants did not have the c.G125A mutation. The exon 2 region surrounding codon 42, had a c.136G > A mutation that was present in all P. vivax infections. The odds ratio for lack of this mutation with P. vivax infections was (OR 0.015, 95% CI 0.001-0.176; p = 0.001). CONCLUSION: We conclude that P. vivax infections previously reported in Namibia, occurred in Duffy negative participants, carrying the G125A mutation in codon 42. The role of the additional mutation c.136 G > A in exon 2 in P. vivax infections, will require further investigations.


Asunto(s)
Malaria Vivax , Plasmodium vivax , Niño , Sistema del Grupo Sanguíneo Duffy/genética , Humanos , Malaria Vivax/epidemiología , Mutación , Namibia/epidemiología , Plasmodium falciparum , Plasmodium vivax/genética
17.
Int J Mol Sci ; 22(18)2021 Sep 10.
Artículo en Inglés | MEDLINE | ID: mdl-34575977

RESUMEN

Amidst the global shortfalls in blood supply, storage limitations of donor blood and the availability of potential blood substitutes for transfusion applications, society has pivoted towards in vitro generation of red blood cells (RBCs) as a means to solve these issues. Many conventional research studies over the past few decades have found success in differentiating hematopoietic stem and progenitor cells (HSPCs) from cord blood, adult bone marrow and peripheral blood sources. More recently, techniques that involve immortalization of erythroblast sources have also gained traction in tackling this problem. However, the RBCs generated from human induced pluripotent stem cells (hiPSCs) still remain as the most favorable solution due to many of its added advantages. In this review, we focus on the breakthroughs for high-density cultures of hiPSC-derived RBCs, and highlight the major challenges and prospective solutions throughout the whole process of erythropoiesis for hiPSC-derived RBCs. Furthermore, we elaborate on the recent advances and techniques used to achieve cost-effective, high-density cultures of GMP-compliant RBCs, and on their relevant novel applications after downstream processing and purification.


Asunto(s)
Sustitutos Sanguíneos/uso terapéutico , Eritrocitos/citología , Células Madre Hematopoyéticas/citología , Células Madre Pluripotentes Inducidas/citología , Diferenciación Celular/genética , Transfusión de Eritrocitos , Eritropoyesis/genética , Sangre Fetal/citología , Humanos
18.
BMC Bioinformatics ; 21(1): 300, 2020 Jul 11.
Artículo en Inglés | MEDLINE | ID: mdl-32652926

RESUMEN

BACKGROUND: A common yet still manual task in basic biology research, high-throughput drug screening and digital pathology is identifying the number, location, and type of individual cells in images. Object detection methods can be useful for identifying individual cells as well as their phenotype in one step. State-of-the-art deep learning for object detection is poised to improve the accuracy and efficiency of biological image analysis. RESULTS: We created Keras R-CNN to bring leading computational research to the everyday practice of bioimage analysts. Keras R-CNN implements deep learning object detection techniques using Keras and Tensorflow ( https://github.com/broadinstitute/keras-rcnn ). We demonstrate the command line tool's simplified Application Programming Interface on two important biological problems, nucleus detection and malaria stage classification, and show its potential for identifying and classifying a large number of cells. For malaria stage classification, we compare results with expert human annotators and find comparable performance. CONCLUSIONS: Keras R-CNN is a Python package that performs automated cell identification for both brightfield and fluorescence images and can process large image sets. Both the package and image datasets are freely available on GitHub and the Broad Bioimage Benchmark Collection.


Asunto(s)
Aprendizaje Profundo , Procesamiento de Imagen Asistido por Computador/métodos , Programas Informáticos , Núcleo Celular , Humanos , Plasmodium vivax/crecimiento & desarrollo
19.
PLoS Med ; 16(2): e1002745, 2019 02.
Artículo en Inglés | MEDLINE | ID: mdl-30768615

RESUMEN

BACKGROUND: The emergence and spread of multidrug-resistant Plasmodium falciparum in the Greater Mekong Subregion (GMS) threatens global malaria elimination efforts. Mass drug administration (MDA), the presumptive antimalarial treatment of an entire population to clear the subclinical parasite reservoir, is a strategy to accelerate malaria elimination. We report a cluster randomised trial to assess the effectiveness of dihydroartemisinin-piperaquine (DP) MDA in reducing falciparum malaria incidence and prevalence in 16 remote village populations in Myanmar, Vietnam, Cambodia, and the Lao People's Democratic Republic, where artemisinin resistance is prevalent. METHODS AND FINDINGS: After establishing vector control and community-based case management and following intensive community engagement, we used restricted randomisation within village pairs to select 8 villages to receive early DP MDA and 8 villages as controls for 12 months, after which the control villages received deferred DP MDA. The MDA comprised 3 monthly rounds of 3 daily doses of DP and, except in Cambodia, a single low dose of primaquine. We conducted exhaustive cross-sectional surveys of the entire population of each village at quarterly intervals using ultrasensitive quantitative PCR to detect Plasmodium infections. The study was conducted between May 2013 and July 2017. The investigators randomised 16 villages that had a total of 8,445 residents at the start of the study. Of these 8,445 residents, 4,135 (49%) residents living in 8 villages, plus an additional 288 newcomers to the villages, were randomised to receive early MDA; 3,790 out of the 4,423 (86%) participated in at least 1 MDA round, and 2,520 out of the 4,423 (57%) participated in all 3 rounds. The primary outcome, P. falciparum prevalence by month 3 (M3), fell by 92% (from 5.1% [171/3,340] to 0.4% [12/2,828]) in early MDA villages and by 29% (from 7.2% [246/3,405] to 5.1% [155/3,057]) in control villages. Over the following 9 months, the P. falciparum prevalence increased to 3.3% (96/2,881) in early MDA villages and to 6.1% (128/2,101) in control villages (adjusted incidence rate ratio 0.41 [95% CI 0.20 to 0.84]; p = 0.015). Individual protection was proportional to the number of completed MDA rounds. Of 221 participants with subclinical P. falciparum infections who participated in MDA and could be followed up, 207 (94%) cleared their infections, including 9 of 10 with artemisinin- and piperaquine-resistant infections. The DP MDAs were well tolerated; 6 severe adverse events were detected during the follow-up period, but none was attributable to the intervention. CONCLUSIONS: Added to community-based basic malaria control measures, 3 monthly rounds of DP MDA reduced the incidence and prevalence of falciparum malaria over a 1-year period in areas affected by artemisinin resistance. P. falciparum infections returned during the follow-up period as the remaining infections spread and malaria was reintroduced from surrounding areas. Limitations of this study include a relatively small sample of villages, heterogeneity between villages, and mobility of villagers that may have limited the impact of the intervention. These results suggest that, if used as part of a comprehensive, well-organised, and well-resourced elimination programme, DP MDA can be a useful additional tool to accelerate malaria elimination. TRIAL REGISTRATION: ClinicalTrials.gov NCT01872702.


Asunto(s)
Antimaláricos/administración & dosificación , Erradicación de la Enfermedad/métodos , Resistencia a Múltiples Medicamentos/efectos de los fármacos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/epidemiología , Administración Masiva de Medicamentos/métodos , Adolescente , Adulto , Asia Sudoriental/epidemiología , Niño , Análisis por Conglomerados , Estudios Cruzados , Resistencia a Múltiples Medicamentos/fisiología , Femenino , Humanos , Malaria Falciparum/diagnóstico , Masculino , Adulto Joven
20.
Blood ; 130(11): 1357-1363, 2017 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-28698207

RESUMEN

Two malaria parasites of Southeast Asian macaques, Plasmodium knowlesi and P cynomolgi, can infect humans experimentally. In Malaysia, where both species are common, zoonotic knowlesi malaria has recently become dominant, and cases are recorded throughout the region. By contrast, to date, only a single case of naturally acquired P cynomolgi has been found in humans. In this study, we show that whereas P cynomolgi merozoites invade monkey red blood cells indiscriminately in vitro, in humans, they are restricted to reticulocytes expressing both transferrin receptor 1 (Trf1 or CD71) and the Duffy antigen/chemokine receptor (DARC or CD234). This likely contributes to the paucity of detectable zoonotic cynomolgi malaria. We further describe postinvasion morphologic and rheologic alterations in P cynomolgi-infected human reticulocytes that are strikingly similar to those observed for P vivax These observations stress the value of P cynomolgi as a model in the development of blood stage vaccines against vivax malaria.


Asunto(s)
Antígenos CD/metabolismo , Sistema del Grupo Sanguíneo Duffy/metabolismo , Plasmodium cynomolgi/fisiología , Receptores de Superficie Celular/metabolismo , Receptores de Transferrina/metabolismo , Reticulocitos/parasitología , Tropismo , Zoonosis/parasitología , Animales , Eritrocitos/parasitología , Interacciones Huésped-Parásitos , Humanos , Macaca , Merozoítos/fisiología , Plasmodium vivax/fisiología , Reología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA