Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Tipo de estudio
Tipo del documento
Asunto de la revista
Intervalo de año de publicación
1.
JMIR Nurs ; 4(1): e20584, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34345793

RESUMEN

BACKGROUND: Clinical alarm system safety is a national patient safety goal in the United States. Physiologic monitors are associated with the highest number of device alarms and alarm-related deaths. However, research involving nurses' use of physiologic monitors is rare. Hence, the identification of critical usability issues for monitors, especially those related to patient safety, is a nursing imperative. OBJECTIVE: This study examined nurses' usability of physiologic monitors in intensive care units with respect to the effectiveness and efficiency of monitor use. METHODS: In total, 30 nurses from 4 adult intensive care units completed 40 tasks in a simulation environment. The tasks were common monitoring tasks that were crucial for appropriate monitoring and safe alarm management across four categories of competencies: admitting, transferring, and discharging patients using the monitors (7 tasks); managing measurements and monitor settings (23 tasks); performing electrocardiogram (ECG) analysis (7 tasks); and troubleshooting alarm conditions (3 tasks). The nurse-monitor interaction was video-recorded. The principal investigator and two expert intensive care units nurse educators identified, classified, and validated task success (effectiveness) and the time of task completion (efficiency). RESULTS: Among the 40 tasks, only 2 (5%) were successfully completed by all the nurses. At least 1-27 (3%-90%) nurses abandoned or did not correctly perform 38 tasks. The task with the shortest completion time was "take monitor out of standby" (mean 0:02, SD 0:01 min:s), whereas the task "record a 25 mm/s ECG strip of any of the ECG leads" had the longest completion time (mean 1:14, SD 0:32 min:s). The total time to complete 37 navigation-related tasks ranged from a minimum of 3 min 57 s to a maximum of 32 min 42 s. Regression analysis showed that it took 6 s per click or step to successfully complete a task. To understand the nurses' thought processes during monitor navigation, the authors analyzed the paths of the 2 tasks with the lowest successful completion rates, where only 13% (4/30) of the nurses correctly completed these 2 tasks. Although 30% (9/30) of the nurses accessed the correct screen first for task 1 and task 2, they could not find their way easily from there to successfully complete the 2 tasks. CONCLUSIONS: Usability testing of physiologic monitors revealed major ineffectiveness and inefficiencies in the current nurse-monitor interactions. The results indicate the potential for safety and productivity issues in completing routine tasks. Training on monitor use should include critical monitoring functions that are necessary for safe, effective, efficient, and appropriate monitoring to include knowledge of the shortest navigation path. It is imperative that vendors' future monitor designs mimic clinicians' thought processes for successful, safe, and efficient monitor navigation.

2.
JMIR Med Inform ; 7(1): e11873, 2019 Mar 25.
Artículo en Inglés | MEDLINE | ID: mdl-30907735

RESUMEN

BACKGROUND: Critically ill patients require constant point-of-care blood glucose testing to guide insulin-related decisions. Transcribing these values from glucometers into a paper log and the electronic medical record is very common yet error-prone in intensive care units, given the lack of connectivity between glucometers and the electronic medical record in many US hospitals. OBJECTIVE: We examined (1) transcription errors of glucometer blood glucose values documented in the paper log and in the electronic medical record vital signs flow sheet in a surgical trauma intensive care unit, (2) insulin errors resulting from transcription errors, (3) lack of documenting these values in the paper log and the electronic medical record vital signs flow sheet, and (4) average time for docking the glucometer. METHODS: This secondary data analysis examined 5049 point-of-care blood glucose tests. We obtained values of blood glucose tests from bidirectional interface software that transfers the meters' data to the electronic medical record, the paper log, and the vital signs flow sheet. We obtained patient demographic and clinical-related information from the electronic medical record. RESULTS: Of the 5049 blood glucose tests, which were pertinent to 234 patients, the total numbers of undocumented or untranscribed tests were 608 (12.04%) in the paper log, 2064 (40.88%) in the flow sheet, and 239 (4.73%) in both. The numbers of transcription errors for the documented tests were 98 (2.21% of 4441 documented tests) in the paper log, 242 (8.11% of 2985 tests) in the flow sheet, and 43 (1.64% of 2616 tests) in both. The numbers of transcription errors per patient were 0.4 (98 errors/234 patients) in the paper log, 1 (242 errors/234 patients) in the flow sheet, and 0.2 in both (43 errors/234 patients). Transcription errors in the paper log, the flow sheet, and in both resulted in 8, 24, and 2 insulin errors, respectively. As a consequence, patients were given a lower or higher insulin dose than the dose they should have received had there been no errors. Discrepancies in insulin doses were 2 to 8 U lower doses in paper log transcription errors, 10 U lower to 3 U higher doses in flow sheet transcription errors, and 2 U lower in transcription errors in both. Overall, 30 unique insulin errors affected 25 of 234 patients (10.7%). The average time from point-of-care testing to meter docking was 8 hours (median 5.5 hours), with some taking 56 hours (2.3 days) to be uploaded. CONCLUSIONS: Given the high dependence on glucometers for point-of-care blood glucose testing in intensive care units, full electronic medical record-glucometer interoperability is required for complete, accurate, and timely documentation of blood glucose values and elimination of transcription errors and the subsequent insulin-related errors in intensive care units.

3.
J Appl Oral Sci ; 16(1): 59-63, 2008.
Artículo en Inglés | MEDLINE | ID: mdl-19089291

RESUMEN

The purpose of this study was to analyze the inflammatory response of dog's periapical tissues to 17% trisodium EDTA salt (pH 8.0) and 1% citric acid (pH 2.0). Saline was used as a control. Six adult dogs were used as the biological model of the study. The experimental units comprised 56 roots of mandibular molars (first and second) and premolars (first, second and third). After coronal opening, pulpectomy and root canal instrumentation were performed using the above-mentioned irrigating solutions. After 24 and 48 hours, the animals were euthanized and the teeth and their supporting tissues were removed and histologically processed. The sections were stained with hematoxylin and eosin and analyzed histopathologically with a light microscope at x100 magnification. The histological analysis focused on the occurrence of acute inflammatory response. The presence of swelling, vasodilatation and inflammatory cells were evaluated and the degree of inflammation was determined for each case. Data were analyzed by Fisher's exact test using the SPSS software with a confidence interval of 95% (p<0.05). 17% EDTA and 1% citric acid caused inflammatory responses in dog's periapical tissues with no significant differences to each other or to saline (control) at either the 24-hour (p=0.482) or 48-hour (p=0.377) periods. It may be concluded that the inflammatory response was of mild intensity for the tested substances.


Asunto(s)
Materiales Biocompatibles/uso terapéutico , Ácido Cítrico/uso terapéutico , Ácido Edético/uso terapéutico , Tejido Periapical/efectos de los fármacos , Irrigantes del Conducto Radicular/uso terapéutico , Animales , Diente Premolar/patología , Perros , Edema/inducido químicamente , Edema/patología , Modelos Animales , Diente Molar/patología , Periodontitis Periapical/inducido químicamente , Periodontitis Periapical/patología , Tejido Periapical/patología , Pulpectomía/métodos , Preparación del Conducto Radicular/instrumentación , Preparación del Conducto Radicular/métodos , Factores de Tiempo , Vasodilatación/efectos de los fármacos
4.
J. appl. oral sci ; J. appl. oral sci;16(1): 59-63, Jan.-Feb. 2008. ilus, tab
Artículo en Inglés | LILACS | ID: lil-472691

RESUMEN

The purpose of this study was to analyze the inflammatory response of dog's periapical tissues to 17 percent trisodium EDTA salt (pH 8.0) and 1 percent citric acid (pH 2.0). Saline was used as a control. Six adult dogs were used as the biological model of the study. The experimental units comprised 56 roots of mandibular molars (first and second) and premolars (first, second and third). After coronal opening, pulpectomy and root canal instrumentation were performed using the above-mentioned irrigating solutions. After 24 and 48 hours, the animals were euthanized and the teeth and their supporting tissues were removed and histologically processed. The sections were stained with hematoxylin and eosin and analyzed histopathologically with a light microscope at x100 magnification. The histological analysis focused on the occurrence of acute inflammatory response. The presence of swelling, vasodilatation and inflammatory cells were evaluated and the degree of inflammation was determined for each case. Data were analyzed by Fisher's exact test using the SPSS software with a confidence interval of 95 percent (p<0.05). 17 percent EDTA and 1 percent citric acid caused inflammatory responses in dog's periapical tissues with no significant differences to each other or to saline (control) at either the 24-hour (p=0.482) or 48-hour (p=0.377) periods. It may be concluded that the inflammatory response was of mild intensity for the tested substances.


Asunto(s)
Animales , Perros , Materiales Biocompatibles/uso terapéutico , Ácido Cítrico/uso terapéutico , Ácido Edético/uso terapéutico , Tejido Periapical/efectos de los fármacos , Irrigantes del Conducto Radicular/uso terapéutico , Diente Premolar/patología , Edema/inducido químicamente , Edema/patología , Modelos Animales , Diente Molar/patología , Periodontitis Periapical/inducido químicamente , Periodontitis Periapical/patología , Tejido Periapical/patología , Pulpectomía/métodos , Preparación del Conducto Radicular/instrumentación , Preparación del Conducto Radicular/métodos , Factores de Tiempo , Vasodilatación/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA