Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Ecotoxicology ; 27(4): 477-484, 2018 May.
Artículo en Inglés | MEDLINE | ID: mdl-29524054

RESUMEN

Recent studies have highlighted that antidepressants such as the selective serotonin reuptake inhibitors (SSRIs) entering aquatic systems through wastewater discharges might impact organisms at environmentally relevant concentrations. In this study, two snail species (Gibbula unbilicalis and Lymnea stagnalis) representing the marine and freshwater environments were exposed to a large range of fluoxetine concentrations (1 ng L-1-1 mg L-1) and two distinct behaviours (foot detachment and righting time) were recorded. Fluoxetine significantly caused foot detachment only at the higher of the concentrations (1 mg L-1) in both species during the course of this short term 1.5 h and 4 h exposures. In this study, lowest observed effect concentrations (LOECs) for foot detachment fell repeatedly within the range for other gastropod snails exposed to fluoxetine. Fluoxetine effected righting times in a concentration dependant manner but only significantly within G. unbilicalis in the highest concentration. Reviewing existing data on the effects of antidepressants on a range of endpoints in gastropod molluscs reveals wide variability of results. The importance of publishing 'negative' and/or non-dramatic results to aid risk assessment are discussed along with the variability between antidepressants, model species, experimental designs and endpoints.


Asunto(s)
Fluoxetina/toxicidad , Inhibidores Selectivos de la Recaptación de Serotonina/toxicidad , Caracoles/efectos de los fármacos , Contaminantes Químicos del Agua/toxicidad , Animales , Relación Dosis-Respuesta a Droga , Lymnaea/efectos de los fármacos , Actividad Motora/efectos de los fármacos , Factores de Tiempo
2.
Proc Natl Acad Sci U S A ; 110(25): 10189-94, 2013 Jun 18.
Artículo en Inglés | MEDLINE | ID: mdl-23733951

RESUMEN

Nature uses a diversity of glycoside hydrolase (GH) enzymes to convert polysaccharides to sugars. As lignocellulosic biomass deconstruction for biofuel production remains costly, natural GH diversity offers a starting point for developing industrial enzymes, and fungal GH family 7 (GH7) cellobiohydrolases, in particular, provide significant hydrolytic potential in industrial mixtures. Recently, GH7 enzymes have been found in other kingdoms of life besides fungi, including in animals and protists. Here, we describe the in vivo spatial expression distribution, properties, and structure of a unique endogenous GH7 cellulase from an animal, the marine wood borer Limnoria quadripunctata (LqCel7B). RT-quantitative PCR and Western blot studies show that LqCel7B is expressed in the hepatopancreas and secreted into the gut for wood degradation. We produced recombinant LqCel7B, with which we demonstrate that LqCel7B is a cellobiohydrolase and obtained four high-resolution crystal structures. Based on a crystallographic and computational comparison of LqCel7B to the well-characterized Hypocrea jecorina GH7 cellobiohydrolase, LqCel7B exhibits an extended substrate-binding motif at the tunnel entrance, which may aid in substrate acquisition and processivity. Interestingly, LqCel7B exhibits striking surface charges relative to fungal GH7 enzymes, which likely results from evolution in marine environments. We demonstrate that LqCel7B stability and activity remain unchanged, or increase at high salt concentration, and that the L. quadripunctata GH mixture generally contains cellulolytic enzymes with highly acidic surface charge compared with enzymes derived from terrestrial microbes. Overall, this study suggests that marine cellulases offer significant potential for utilization in high-solids industrial biomass conversion processes.


Asunto(s)
Celulasa/metabolismo , Celulosa 1,4-beta-Celobiosidasa/química , Celulosa 1,4-beta-Celobiosidasa/metabolismo , Crustáceos/enzimología , Tolerancia a la Sal/fisiología , Animales , Biocombustibles , Biomasa , Celulosa 1,4-beta-Celobiosidasa/genética , Crustáceos/genética , Cristalografía por Rayos X , Sistema Digestivo/enzimología , Activación Enzimática/fisiología , Hypocrea/enzimología , Datos de Secuencia Molecular , Estructura Terciaria de Proteína , Agua de Mar , Relación Estructura-Actividad , Especificidad por Sustrato
3.
J Vis Exp ; (179)2022 01 29.
Artículo en Inglés | MEDLINE | ID: mdl-35156659

RESUMEN

Wood-boring invertebrates rapidly destroy marine timbers and wooden coastal infrastructure, causing billions of dollars of damage around the globe every year. As treatments of wood with broad spectrum biocides, such as creosote and chromated copper arsenate (CCA), are now restricted in marine use by legislation, naturally durable timber species and novel preservation methods of wood are required. These methods undergo testing in order to meet regulatory standards, such as the European standard for testing wood preservatives against marine borers, EN 275. Initial investigation of durable timbers species or wood preservative treatments can be achieved quickly and inexpensively through laboratory testing, which offers many advantages over marine field trials that are typically costly, long-term endeavours. Many species of Limnoria (gribble) are marine wood-boring crustaceans. Limnoria are ideal for use in laboratory testing of biodegradation of wood by marine wood-borers, due to the practicality of rearing them in aquaria and the ease of measuring their feeding rates on wood. Herein, we outline a standardizable laboratory test for assessing wood biodegradation using gribble.


Asunto(s)
Desinfectantes , Madera , Animales , Cobre/análisis , Desinfectantes/análisis , Invertebrados , Madera/química
4.
Nat Commun ; 9(1): 5125, 2018 12 03.
Artículo en Inglés | MEDLINE | ID: mdl-30510200

RESUMEN

Woody (lignocellulosic) plant biomass is an abundant renewable feedstock, rich in polysaccharides that are bound into an insoluble fiber composite with lignin. Marine crustacean woodborers of the genus Limnoria are among the few animals that can survive on a diet of this recalcitrant material without relying on gut resident microbiota. Analysis of fecal pellets revealed that Limnoria targets hexose-containing polysaccharides (mainly cellulose, and also glucomannans), corresponding with the abundance of cellulases in their digestive system, but xylans and lignin are largely unconsumed. We show that the limnoriid respiratory protein, hemocyanin, is abundant in the hindgut where wood is digested, that incubation of wood with hemocyanin markedly enhances its digestibility by cellulases, and that it modifies lignin. We propose that this activity of hemocyanins is instrumental to the ability of Limnoria to feed on wood in the absence of gut symbionts. These findings may hold potential for innovations in lignocellulose biorefining.


Asunto(s)
Tracto Gastrointestinal/fisiología , Hemocianinas/metabolismo , Isópodos/fisiología , Lignina/metabolismo , Madera/parasitología , Animales , Celulosa/metabolismo , Dieta , Digestión/fisiología , Heces/química , Tracto Gastrointestinal/metabolismo , Tracto Gastrointestinal/ultraestructura , Isópodos/metabolismo , Microscopía Electrónica de Rastreo , Microscopía Electrónica de Transmisión , Xilanos/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA