Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 13(1): 22591, 2023 Dec 18.
Artículo en Inglés | MEDLINE | ID: mdl-38114619

RESUMEN

The precise positioning of dopants in semiconductors using scanning tunneling microscopes has led to the development of planar dopant-based devices, also known as [Formula: see text]layer-based devices, facilitating the exploration of new concepts in classical and quantum computing. Recently, it has been shown that two distinct conductivity regimes (low- and high-bias regimes) exist in [Formula: see text]-layer tunnel junctions due to the presence of quasi-discrete and continuous states in the conduction band of [Formula: see text]-layer systems. Furthermore, discrete charged impurities in the tunnel junction region significantly influence the tunneling rates in [Formula: see text]-layer tunnel junctions. Here we demonstrate that electrical dipoles, i.e. zero-charge defects, present in the tunnel junction region can also significantly alter the tunneling rate, depending, however, on the specific conductivity regime, and orientation and moment of the dipole. In the low-bias regime, with high-resistance tunneling mode, dipoles of nearly all orientations and moments can alter the current, indicating the extreme sensitivity of the tunneling current to the slightest imperfection in the tunnel gap. In the high-bias regime, with low-resistivity, only dipoles with high moments and oriented in the directions perpendicular to the electron tunneling direction can significantly affect the current, thus making this conductivity regime significantly less prone to the influence of dipole defects with low-moments or oriented in the direction parallel to the tunneling.

2.
Sci Rep ; 12(1): 16397, 2022 Sep 30.
Artículo en Inglés | MEDLINE | ID: mdl-36180529

RESUMEN

We present an open-system quantum-mechanical 3D real-space study of the conduction band structure and conductive properties of two semiconductor systems, interesting for their beyond-Moore and quantum computing applications: phosphorus [Formula: see text]-layers and P [Formula: see text]-layer tunnel junctions in silicon. In order to evaluate size quantization effects on the conductivity, we consider two principal cases: nanoscale finite-width structures, used in transistors, and infinitely-wide structures, electrical properties of which are typically known experimentally. For devices widths [Formula: see text] nm, quantization effects are strong and it is shown that the number of propagating modes determines not only the conductivity, but the distinctive spatial distribution of the current-carrying electron states. For [Formula: see text] nm, the quantization effects practically vanish and the conductivity tends to the infinitely-wide device values. For tunnel junctions, two distinct conductivity regimes are predicted due to the strong conduction band quantization.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA