Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
1.
Int J Mol Sci ; 23(7)2022 Apr 02.
Artículo en Inglés | MEDLINE | ID: mdl-35409342

RESUMEN

Over the last two decades, indoleamine 2,3-dioxygenase 1 (IDO1) has attracted wide interest as a key player in immune regulation, fostering the design and development of small molecule inhibitors to restore immune response in tumor immunity. In this framework, biochemical, structural, and pharmacological studies have unveiled peculiar structural plasticity of IDO1, with different conformations and functional states that are coupled to fine regulation of its catalytic activity and non-enzymic functions. The large plasticity of IDO1 may affect its ligand recognition process, generating bias in structure-based drug design campaigns. In this work, we report a screening campaign of a fragment library of compounds, grounding on the use of three distinct conformations of IDO1 that recapitulate its structural plasticity to some extent. Results are instrumental to discuss tips and pitfalls that, due to the large plasticity of the enzyme, may influence the identification of novel and differentiated chemical scaffolds of IDO1 ligands in structure-based screening campaigns.


Asunto(s)
Inhibidores Enzimáticos , Indolamina-Pirrol 2,3,-Dioxigenasa , Inhibidores Enzimáticos/química , Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ligandos , Conformación Molecular , Relación Estructura-Actividad
2.
J Autoimmun ; 115: 102509, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-32605792

RESUMEN

Indoleamine 2,3-dioxygenase 1 (IDO1) - the enzyme catalyzing the rate-limiting step of tryptophan catabolism along the kynurenine pathway - belongs to the class of inhibitory immune checkpoint molecules. Such regulators of the immune system are crucial for maintaining self-tolerance and thus, when properly working, preventing autoimmunity. A dysfunctional IDO1 has recently been associated with a specific single nucleotide polymorphism (SNP) and with the occurrence of autoimmune diabetes and multiple sclerosis. Many genetic alterations of IDO1 have been proposed being related with dysimmune disorders. However, the molecular and functional meaning of variations in IDO1 exomes as well as the promoter region remains a poorly explored field. In the present study, we identified a rare missense variant (rs751360195) at the IDO1 gene in a patient affected by coeliac disease, thyroiditis, and selective immunoglobulin A deficiency. Molecular and functional studies demonstrated that the substitution of lysine (K) at position 257 with a glutamic acid (E) results in an altered IDO1 protein that undergoes a rapid protein turnover. This genotype-to-phenotype relation is produced by peripheral blood mononuclear cells (PBMCs) of the patient bearing this variation and is associated with a specific phenotype (i.e., impaired tryptophan catabolism and defective mechanisms of immune tolerance). Thus decoding functional mutations of the IDO1 exome may provide clinically relevant information exploitable to personalize therapeutic interventions.


Asunto(s)
Indolamina-Pirrol 2,3,-Dioxigenasa/genética , Síndromes Mielodisplásicos/genética , Complejo de la Endopetidasa Proteasomal/metabolismo , Análisis Mutacional de ADN , Exones/genética , Células HEK293 , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Simulación de Dinámica Molecular , Mutación Missense , Síndromes Mielodisplásicos/inmunología , Proteolisis
3.
Bioorg Med Chem ; 28(22): 115731, 2020 11 15.
Artículo en Inglés | MEDLINE | ID: mdl-33007550

RESUMEN

The medicinal chemist toolbox is plenty of (bio)isosteres when looking for a carboxylic acid replacement. However, systematic assessment of acid surrogates is often time consuming and expensive, while prediction of both physicochemical properties (logP and logD) as well as acidity would be desirable at early discovery stages for a better analog design. Herein in this work, to enable decision making on a project, we have synthesized by employing a Diversity-Oriented Synthetic (DOS) methodology, a small library of molecular fragments endowed with acidic properties. By combining in-silico and experimental methodologies these compounds were chemically characterized and, particularly, with the aim to know their physicochemical properties, the aqueous ionization constants (pKa), partition coefficients logD and logP of each fragment was firstly estimated by using molecular modeling studies and then validated by experimental determinations. A face to face comparison between data and the corresponding carboxylic acid might help medicinal chemists in finding the best replacement to be used. Finally, in the framework of Fragment Based Drug Design (FBDD) the small library of fragments obtained with our approach showed good versatility both in synthetic and physico-chemical properties.


Asunto(s)
Ácidos Carboxílicos/síntesis química , Diseño de Fármacos , Ácidos Carboxílicos/química , Bases de Datos Factuales , Modelos Moleculares , Estructura Molecular
4.
RSC Adv ; 12(34): 21968-21977, 2022 Aug 04.
Artículo en Inglés | MEDLINE | ID: mdl-36043064

RESUMEN

Proteolysis targeting chimeras (PROTACs) represent an emerging class of compounds for innovative therapeutic application. Their bifunctional nature induces the formation of a ternary complex (target protein/PROTAC/E3 ligase) which allows target protein ubiquitination and subsequent proteasomal-dependent degradation. To date, despite great efforts being made to improve their biological efficacy PROTACs rational design still represents a challenging task, above all for the modulation of their physicochemical and pharmacokinetics properties. Considering the pivotal role played by the linker moiety, recently the insertion of a piperazine moiety into the PROTAC linker has been widely used, as this ring can in principle improve rigidity and increase solubility upon protonation. Nevertheless, the pK a of the piperazine ring is significantly affected by the chemical groups located nearby, and slight modifications in the linker could eliminate the desired effect. In the present study, the pK a values of a dataset of synthesized small molecule compounds including PROTACs and their precursors have been evaluated in order to highlight how a fine modulation of piperazine-containing linkers can impact the protonation state of these molecules or similar heterobifunctional ones. Finally, the possibility of predicting the trend through in silico approaches was also evaluated.

5.
ChemMedChem ; 16(18): 2732-2743, 2021 09 16.
Artículo en Inglés | MEDLINE | ID: mdl-34137184

RESUMEN

Since its discovery at the beginning of the past century, the essential nutrient l-Tryptophan (l-Trp) and its catabolic pathways have acquired an increasing interest in an ever wider scientific community for their pivotal roles in underlying many important physiological functions and associated pathological conditions. As a consequence, enzymes catalyzing rate limiting steps along l-Trp catabolic pathways - including IDO1, TDO, TPH1 and TPH2 - have turned to be interesting drug targets for the design and development of novel therapeutic agents for different disorders such as carcinoid syndrome, cancer and autoimmune diseases. This article provides a fresh comparative overview on the most recent advancements that crystallographic studies, biophysical and computational works have brought on structural aspects and molecular recognition patterns of these enzymes toward l-Trp. Finally, a conformational analysis of l-Trp is also discussed as part of the molecular recognition process governing the binding of a substrate to its cognate enzymes.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Triptófano Hidroxilasa/antagonistas & inhibidores , Triptófano Oxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Modelos Moleculares , Estructura Molecular , Triptófano Hidroxilasa/metabolismo , Triptófano Oxigenasa/metabolismo
6.
ChemMedChem ; 16(3): 568-577, 2021 02 04.
Artículo en Inglés | MEDLINE | ID: mdl-33085193

RESUMEN

The interaction between programmed cell death-1 (PD-1) and its ligand PD-L1 activates a coinhibitory signal that blocks T-cell activation, promoting the immune escape process in the tumor microenvironment. Development of monoclonal antibodies targeting and inhibiting PD-1/PD-L1 interaction as anticancer immunotherapies has proved successful in multiple clinical settings and for various types of cancer. Notwithstanding, limitations exist with the use of these biologics, including drug resistance and narrow therapeutic response rate in a majority of patients, that demand for the design of more efficacious small molecule-based immunotherapies. Alteration of pH in the tumor microenvironment is a key factor that is involved in promoting drug resistance, tumor survival and progression. In this study, we have investigated the effect of pH shifts on binding properties of distinct classes of PD-L1 inhibitors, including macrocyclic peptide and small molecules. Results expand structure-activity relationships of PD-L1 inhibitors, providing insights into structural features and physicochemical properties that are useful for the design of ligands that may escape a drug resistance mechanism associated to variable pH conditions of tumor microenvironment.


Asunto(s)
Anticuerpos Monoclonales/metabolismo , Antineoplásicos Inmunológicos/farmacología , Antígeno B7-H1/antagonistas & inhibidores , Inhibidores de Puntos de Control Inmunológico/farmacología , Neoplasias/terapia , Receptor de Muerte Celular Programada 1/antagonistas & inhibidores , Anticuerpos Monoclonales/química , Antineoplásicos Inmunológicos/síntesis química , Antineoplásicos Inmunológicos/química , Antígeno B7-H1/metabolismo , Relación Dosis-Respuesta a Droga , Humanos , Concentración de Iones de Hidrógeno , Inhibidores de Puntos de Control Inmunológico/síntesis química , Inhibidores de Puntos de Control Inmunológico/química , Inmunoterapia , Modelos Moleculares , Estructura Molecular , Neoplasias/metabolismo , Receptor de Muerte Celular Programada 1/metabolismo , Relación Estructura-Actividad
7.
ChemMedChem ; 15(10): 891-899, 2020 05 19.
Artículo en Inglés | MEDLINE | ID: mdl-32190988

RESUMEN

A large number of crystallographic structures of IDO1 in different ligand-bound and -unbound states have been disclosed over the last decade. Yet, only a few of them have been exploited for structure-based drug design (SBDD) campaigns. In this study, we analyzed the structural motifs and molecular-recognition properties of three groups of IDO1 structures: 1) structures containing the heme group and inhibitors in the catalytic site; 2) heme-free structures of IDO1; 3) substrate-bound structures of IDO1. The results suggest that unrelated conformations of the enzyme have been solved with different ligand-induced changes of secondary motifs that localize even in regions remote from the catalytic site. Moreover, the study identified an uncharted region of molecular-recognition space covered by IDO1 binding sites that could guide the selection of diverse structures for additional SBDD studies aimed at the identification of novel lead compounds with differentiated chemical scaffolds.


Asunto(s)
Inhibidores Enzimáticos/farmacología , Indolamina-Pirrol 2,3,-Dioxigenasa/antagonistas & inhibidores , Sitios de Unión/efectos de los fármacos , Cristalografía por Rayos X , Inhibidores Enzimáticos/química , Humanos , Indolamina-Pirrol 2,3,-Dioxigenasa/química , Indolamina-Pirrol 2,3,-Dioxigenasa/metabolismo , Ligandos , Modelos Moleculares , Conformación Molecular , Pliegue de Proteína
8.
Lab Chip ; 5(11): 1271-6, 2005 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16234951

RESUMEN

This report presents a study of electrokinetic transport in a series of integrated macro- to nano-fluidic chips that allow for controlled injection of molecular mixtures into high-density arrays of nanochannels. The high-aspect-ratio nanochannels were fabricated on a Si wafer using interferometric lithography and standard semiconductor industry processes, and are capped with a transparent Pyrex cover slip to allow for experimental observations. Confocal laser scanning microscopy was used to examine the electrokinetic transport of a negatively charged dye (Alexa 488) and a neutral dye (rhodamine B) within nanochannels that varied in width from 35 to 200 nm with electric field strengths equal to or below 2000 V m-1. In the negatively charged channels, nanoconfinement and interactions between the respective solutes and channel walls give rise to higher electroosmotic velocities for the negatively charged dye than for the neutral dye, towards the negative electrode, resulting in an anomalous separation that occurs over a relatively short distance (<1 mm). Increasing the channel widths leads to a switch in the electroosmotic transport behavior observed in microscale channels, where neutral molecules move faster because the negatively charged molecules are slowed by the electrophoretic drag. Thus a clear distinction between "nano-" and "microfluidic" regimes is established. We present an analytical model that accounts for the electrokinetic transport and adsorption (of the neutral dye) at the channel walls, and is in good agreement with the experimental data. The observed effects have potential for use in new nano-separation technologies.


Asunto(s)
Microfluídica/instrumentación , Microfluídica/métodos , Nanotecnología/instrumentación , Cromatografía Capilar Electrocinética Micelar , Colorantes Fluorescentes , Nanotecnología/métodos
9.
Phys Rev Lett ; 97(4): 044504, 2006 Jul 28.
Artículo en Inglés | MEDLINE | ID: mdl-16907578

RESUMEN

We present an experimental study of a low-Reynolds number shear flow between two surfaces, one of which has a regular grooved texture augmented with a superhydrophobic coating. The combination reduces the effective fluid-surface contact area, thereby appreciably decreasing the drag on the surface and effectively changing the macroscopic boundary condition on the surface from no slip to limited slip. We measure the force on the surface and the velocity field in the immediate vicinity on the surface (and thus the wall shear) simultaneously. The latter facilitates a direct assessment of the effective slip length associated with the drag reduction.

10.
Anal Chem ; 76(13): 3810-7, 2004 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-15228359

RESUMEN

The phenomenon of intersample contamination in air-segmented continuous-flow assays has been studied for many years, and new uses are being found for these sampling techniques every day. One application that has been developed recently employs a flow cytometer to conduct high-throughput screening assays of biological compounds. We have explored the sources of intersample contamination in the system and shown how methods developed previously can be applied to describe these phenomena. Using a simple model, we were able to accurately measure liquid film thickness in the sample tubing and demonstrate the effects of intersample contamination in a flow cytometer assay. Also, measures have been taken to reduce the level of intersample contamination in cytometric screening assays, helping to make the system a more viable tool for drug screening applications.


Asunto(s)
Citometría de Flujo/métodos , Propidio/química , Capilares , Sistemas de Liberación de Medicamentos , Citometría de Flujo/instrumentación , Humanos , Análisis de los Mínimos Cuadrados , Sensibilidad y Especificidad , Propiedades de Superficie , Factores de Tiempo , Células U937
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA