Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Plant Dis ; 104(1): 82-93, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-31738689

RESUMEN

The lettuce downy mildew pathogen, Bremia lactucae, is an obligate oomycete that causes extensive produce losses. Initial chlorotic symptoms that severely reduce the market value of the produce are followed by the appearance of white, downy sporulation on the abaxial side of the leaves. These spores become airborne and disseminate the pathogen. Controlling lettuce downy mildew has relied on repeated fungicide applications to prevent outbreaks. However, in addition to direct economic costs, heterogeneity and rapid adaptation of this pathogen to repeatedly applied fungicides has led to the development of fungicide-insensitivity in the pathogen. We deployed a quantitative PCR assay-based detection method using a species-specific DNA target for B. lactucae coupled with a spore trap system to measure airborne B. lactucae spore loads within three commercial fields that each contained experimental plots, designated EXP1 to EXP3. Based upon these measurements, when the spore load in the air reached a critical level (8.548 sporangia per m3 air), we advised whether or not to apply fungicides on a weekly basis within EXP1 to EXP3. This approach saved three sprays in EXP1, and one spray each in EXP2 and EXP3 without a significant increase in disease incidence. The reduction in fungicide applications to manage downy mildew can decrease lettuce production costs while slowing the development of fungicide resistance in B. lactucae by eliminating unnecessary fungicide applications.


Asunto(s)
Agricultura , Microbiología del Aire , Lactuca , Oomicetos , Reacción en Cadena de la Polimerasa , Esporas Fúngicas , Agricultura/métodos , Aire , Lactuca/microbiología , Oomicetos/genética , Enfermedades de las Plantas/microbiología , Esporas Fúngicas/genética
2.
Theor Appl Genet ; 132(8): 2439-2460, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31165222

RESUMEN

KEY MESSAGE: Two QTLs for resistance to lettuce drop, qLDR1.1 and qLDR5.1, were identified. Associated SNPs will be useful in breeding for lettuce drop and provide the foundation for future molecular analysis. Lettuce drop, caused by Sclerotinia minor and S. sclerotiorum, is an economically important disease of lettuce. The association of resistance to lettuce drop with the commercially undesirable trait of fast bolting has hindered the integration of host resistance in control of this disease. Eruption is a slow-bolting cultivar that exhibits a high level of resistance to lettuce drop. Eruption also is completely resistant to Verticillium wilt caused by race 1 of Verticillium dahliae. A recombinant inbred line population from the cross Reine des Glaces × Eruption was genotyped by sequencing and evaluated for lettuce drop and bolting in separate fields infested with either S. minor or V. dahliae. Two quantitative trait loci (QTLs) for lettuce drop resistance were consistently detected in at least two experiments, and two other QTLs were identified in another experiment; the alleles for resistance at all four QTLs originated from Eruption. A QTL for lettuce drop resistance on linkage group (LG) 5, qLDR5.1, was consistently detected in all experiments and explained 11 to 25% of phenotypic variation. On LG1, qLDR1.1 was detected in two experiments explaining 9 to 12% of the phenotypic variation. Three out of four resistance QTLs are distinct from QTLs for bolting; qLDR5.1 is pleiotropic or closely linked with a QTL for early bolting; however, the rate of bolting shows only a small effect on the variance in resistance observed at this locus. The SNP markers linked with these QTLs will be useful in breeding for resistance through marker-assisted selection.


Asunto(s)
Cruzamientos Genéticos , Resistencia a la Enfermedad/genética , Endogamia , Lactuca/genética , Lactuca/microbiología , Enfermedades de las Plantas/genética , Enfermedades de las Plantas/inmunología , Recombinación Genética/genética , Alelos , Antocianinas/metabolismo , Ascomicetos/fisiología , Ligamiento Genético , Sitios Genéticos , Lactuca/inmunología , Fenotipo , Polimorfismo de Nucleótido Simple/genética , Sitios de Carácter Cuantitativo/genética , Carácter Cuantitativo Heredable , Verticillium/fisiología
3.
Phytopathology ; 105(1): 99-109, 2015 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-25084303

RESUMEN

Race TTKSK of the wheat stem rust pathogen (Puccinia graminis f. sp. tritici) threatens the production of wheat and barley worldwide because of its broad-spectrum virulence on many widely grown cultivars. Sources of resistance against race TTKSK were recently identified in several barley landraces (Hordeum vulgare subsp. vulgare) and wild barley accessions (H. vulgare subsp. spontaneum). The objectives of this study were to characterize the inheritance of resistance to wheat stem rust race TTKSK in four barley landraces (Hv501, Hv545, Hv602, and Hv612) and two wild barley (WBDC213 and WBDC345) accessions, map the resistance genes, and determine the allelic relationships among the genes in these accessions and the previously described rpg4/Rpg5 locus. Resistant accessions were crossed with the susceptible cv. Steptoe and resulting F3 populations were evaluated for resistance to race TTKSK at the seedling stage. Segregation of F3 families in populations involving the resistance sources of Hv501, Hv545, Hv612, WBDC213, and WBDC345 fit a 1:2:1 ratio for homozygous resistant (HR)/segregating (SEG)/homozygous susceptible (HS) progenies (with χ2=2.27 to 5.87 and P=0.053 to 0.321), indicating that a single gene confers resistance to race TTKSK. Segregation of F3 families in cross Steptoe/Hv602 did not fit a 1:2:1 ratio (HR/SEG/HS of 20:47:43 with χ2=11.95 and P=0.003), indicating that more than one gene is involved in imparting resistance to race TTKSK. Bulked segregant analysis using >1,500 single-nucleotide polymorphism markers positioned a resistance locus in all six populations on chromosome 5HL in very close proximity to the known location of the rpg4/Rpg5 complex locus. Allelism tests were conducted by making crosses among resistant accessions Hv501, Hv545, and Hv612 and also Q21861 with the rpg4/Rpg5 complex. No segregation was observed in F2 families inoculated with race TTKSK, demonstrating that all Hv lines carry the same allele for resistance and that it resides at or very near the rpg4/Rpg5 locus. Phenotype evaluations of the six barley accessions with wheat stem rust race QCCJ revealed resistant infection types (ITs) at a low incubation temperature and susceptible ITs at a high incubation temperature, similar to Q21861, which carries the temperature-sensitive gene rpg4. The accessions also exhibited low ITs against the rye stem rust isolate 92-MN-90, suggesting that they also carry Rpg5. This result was confirmed through molecular analysis, which revealed that all six barley accessions contain the serine threonine protein kinase domain that confers Rpg5 resistance. These results indicate that cultivated barley is extremely vulnerable to African stem rust races such as TTKSK because even these diverse selections of landrace and wild barley accessions carry only one locus for resistance.


Asunto(s)
Basidiomycota/fisiología , Cromosomas de las Plantas/genética , Resistencia a la Enfermedad/genética , Hordeum/genética , Enfermedades de las Plantas/inmunología , Proteínas de Plantas/genética , Alelos , Mapeo Cromosómico , Genotipo , Hordeum/inmunología , Hordeum/microbiología , Fenotipo , Enfermedades de las Plantas/microbiología , Hojas de la Planta/genética , Hojas de la Planta/inmunología , Hojas de la Planta/microbiología , Tallos de la Planta/genética , Tallos de la Planta/inmunología , Tallos de la Planta/microbiología , Plantones/genética , Plantones/inmunología , Plantones/microbiología
4.
Plant Sci ; 285: 200-213, 2019 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-31203885

RESUMEN

NONRACE-SPECIFIC DISEASE RESISTANCE (NDR1) is a widely characterized gene that plays a key role in defense against multiple bacterial, fungal, oomycete and nematode plant pathogens. NDR1 is required for activation of resistance by multiple NB and LRR-containing (NLR) protein immune sensors and contributes to basal defense. The role of NDR1 in positively regulating salicylic acid (SA)-mediated plant defense responses is well documented. However, ndr1-1 plants flower earlier and show accelerated development in comparison to wild type (WT) Arabidopsis plants, indicating that NDR1 is a negative regulator of flowering and growth. Exogenous application of gibberellic acid (GA) further accelerates the early flowering phenotype in ndr1-1 plants, while the GA biosynthesis inhibitor paclobutrazol attenuated the early flowering phenotype of ndr1-1, but not to WT levels, suggesting partial resistance to paclobutrazol and enhanced GA response in ndr1-1 plants. Mass spectroscopy analyses confirmed that ndr1-1 plants have 30-40% higher levels of GA3 and GA4, while expression of various GA metabolic genes and major flowering regulatory genes is also altered in the ndr1-1 mutant. Taken together this study provides evidence of crosstalk between the ndr1-1-mediated defense and GA-regulated developmental programs in plants.


Asunto(s)
Arabidopsis/genética , Flores/crecimiento & desarrollo , Giberelinas/fisiología , Reguladores del Crecimiento de las Plantas/fisiología , Arabidopsis/crecimiento & desarrollo , Arabidopsis/fisiología , Proteínas de Arabidopsis/fisiología , Resistencia a la Enfermedad/genética , Resistencia a la Enfermedad/fisiología , Giberelinas/metabolismo , Mutación/genética , Enfermedades de las Plantas/inmunología , Enfermedades de las Plantas/microbiología , Reguladores del Crecimiento de las Plantas/metabolismo , Ácido Salicílico/metabolismo , Factores de Transcripción/fisiología , Transcriptoma , Verticillium
5.
Nat Commun ; 9(1): 649, 2018 02 13.
Artículo en Inglés | MEDLINE | ID: mdl-29440741

RESUMEN

Domesticated species are impacted in unintended ways during domestication and breeding. Changes in the nature and intensity of selection impart genetic drift, reduce diversity, and increase the frequency of deleterious alleles. Such outcomes constrain our ability to expand the cultivation of crops into environments that differ from those under which domestication occurred. We address this need in chickpea, an important pulse legume, by harnessing the diversity of wild crop relatives. We document an extreme domestication-related genetic bottleneck and decipher the genetic history of wild populations. We provide evidence of ancestral adaptations for seed coat color crypsis, estimate the impact of environment on genetic structure and trait values, and demonstrate variation between wild and cultivated accessions for agronomic properties. A resource of genotyped, association mapping progeny functionally links the wild and cultivated gene pools and is an essential resource chickpea for improvement, while our methods inform collection of other wild crop progenitor species.


Asunto(s)
Cicer/genética , Productos Agrícolas/genética , Agricultura , Cicer/clasificación , Cicer/fisiología , Ecología , Ambiente , Variación Genética , Genoma de Planta , Genómica , Genotipo , Semillas/clasificación , Semillas/genética , Semillas/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA