Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Biomacromolecules ; 18(6): 1736-1746, 2017 Jun 12.
Artículo en Inglés | MEDLINE | ID: mdl-28535038

RESUMEN

Biodegradable polymers are appealing material for the manufacturing of surgical implants as such implants break down in vivo, negating the need for a subsequent operation for removal. Many biocompatible polymers produce acidic breakdown products that can lead to localized inflammation and osteolysis. This study assesses the feasibility of fabricating implants out of poly(propylene carbonate) (PPC)-starch that degrades into CO2 and water. The basic compression modulus of PPC-starch (1:1 w/w) is 34 MPa; however, the addition of glycerol (1% w/w) and water as plasticizers doubles this value and enhances the surface wettability. The bioactivity and stiffness of PPC-starch blends is increased by the addition of bioglass microparticles (10% w/w) as shown by in vitro osteoblast differentiation assay and mechanical testing. MicroCT analysis confirms that the bioglass microparticles are evenly distributed throughout biomaterial. PPC-starch-bioglass was tested in vivo in two animal models. A murine subcutaneous pellet degradation assay demonstrates that the PPC-starch-bioglass blend's volume fraction loss is 46% after 6 months postsurgery, while it is 27% for poly(lactic acid). In a rat knee implantation model, PPC-starch-bioglass screws inserted into the distal femur show osseointegration with no localized adverse effects after 3 and 12 weeks. These data support the further development of PPC-starch-bioglass as a medical biomaterial.


Asunto(s)
Implantes Absorbibles , Materiales Biocompatibles/síntesis química , Interfase Hueso-Implante/fisiología , Cerámica/farmacología , Polipropilenos/síntesis química , Almidón/química , Animales , Materiales Biocompatibles/metabolismo , Materiales Biocompatibles/farmacología , Interfase Hueso-Implante/anatomía & histología , Interfase Hueso-Implante/diagnóstico por imagen , Dióxido de Carbono/metabolismo , Diferenciación Celular/efectos de los fármacos , Línea Celular Tumoral , Cerámica/química , Femenino , Fémur/cirugía , Glicerol/química , Glicerol/metabolismo , Humanos , Hidrólisis , Masculino , Ratones , Ratones Endogámicos BALB C , Osteoblastos/citología , Osteoblastos/efectos de los fármacos , Polipropilenos/metabolismo , Polipropilenos/farmacología , Ratas , Almidón/metabolismo , Agua/metabolismo , Humectabilidad
2.
Mater Sci Eng C Mater Biol Appl ; 96: 824-830, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30606596

RESUMEN

Polyester-based scaffolds have been employed in tissue engineering due to their biocompatibility, biodegradability, microstructure, and affordability. However, the acidic degradation byproducts of most common polyesters have the potential to cause inflammation and/or necrosis. In this study, we introduce a porous scaffold with benign degradation byproducts fabricated by gas-foaming based on poly(propylene carbonate) (PPC) blended with starch and bioglass particles. The pore sizes ranged from 100 to 500 µm. Manufacturing parameters were tuned from sub-critical to super-critical conditions to optimize porosity, pore size, pore interconnectivity, and mechanical properties. The biological behavior of the constructs was evaluated by in vitro toxicity and proliferation assays and in vivo subcutaneous biocompatibility. Tissue integration was observed in a joint implantation model, supporting the further development of the scaffold for tissue engineering applications.


Asunto(s)
Implantes Absorbibles , Fibroblastos/metabolismo , Gases/química , Ensayo de Materiales , Polipropilenos/química , Andamios del Tejido/química , Fibroblastos/citología , Humanos , Porosidad
3.
Cardiovasc Eng Technol ; 10(2): 205-215, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30767113

RESUMEN

Despite advances in modern surgery, congenital heart disease remains a medical challenge and major cause of infant mortality. Valved conduits are routinely used to surgically correct blood flow in hearts with congenital malformations by connecting the right ventricle to the pulmonary artery (RV-PA). This review explores the current range of RV-PA conduits and describes their strengths and disadvantages. Homografts and xenografts are currently the primary treatment modalities, however both graft types have limited biocompatibility and durability, and present a disease transmission risk. Structural deterioration of a replaced valve can lead to pulmonary valve stenosis and/or regurgitation. Moreover, as current RV-PA conduits are of a fixed size, multiple subsequent operations are required to upsize a valved conduit over a patient's lifetime. We assess emerging biomaterials and tissue engineering techniques with a view to replicating the features of native tissues, including matching the durability and elasticity required for normal fluid flow dynamics. The benefits and limitations of incorporating cellular elements within the biomaterial are also discussed. Present review demonstrates that an alignment of medical and engineering disciplines will be ultimately required to produce a biocompatible and high-functioning artificial conduit.


Asunto(s)
Bioprótesis , Implantación de Prótesis Vascular/instrumentación , Prótesis Vascular , Cardiopatías Congénitas/cirugía , Implantación de Prótesis de Válvulas Cardíacas/instrumentación , Prótesis Valvulares Cardíacas , Ventrículos Cardíacos/cirugía , Arteria Pulmonar/cirugía , Animales , Implantación de Prótesis Vascular/efectos adversos , Cardiopatías Congénitas/diagnóstico por imagen , Cardiopatías Congénitas/fisiopatología , Implantación de Prótesis de Válvulas Cardíacas/efectos adversos , Ventrículos Cardíacos/diagnóstico por imagen , Ventrículos Cardíacos/fisiopatología , Humanos , Diseño de Prótesis , Falla de Prótesis , Arteria Pulmonar/diagnóstico por imagen , Arteria Pulmonar/fisiopatología , Recuperación de la Función , Factores de Riesgo , Resultado del Tratamiento
4.
Macromol Biosci ; 18(12): e1800201, 2018 12.
Artículo en Inglés | MEDLINE | ID: mdl-30395416

RESUMEN

The manufacture of a biocompatible carrier for controlled delivery of bioactive compounds is described. This carrier is composed of a mesoporous silica nanoparticle as core that is homogenously distributed in an injectable hydrogel. For the synthesis of nanoparticles, a one step sol-gel method is developed to produce pores with the range of 100 nm. BMP2 and Fluorescein-conjugated bovine serum albumin is used as proteinaceous agents for measuring release, and is loaded into mesoporous silica nanoparticles at the optimum conditions of 48 h incubation period using 1:10 ratio of protein to nanoparticles. The release of proteins from either mesoporous nanoparticles or hydrogel individually involves a burst release stage, however the release from the core/shell carrier designed in this study follows a zero order kinetic. In summary, this biomaterial may be favorable for delivery of bioactive compounds such as BMP2 for a range of applications including bone tissue regeneration.


Asunto(s)
Proteína Morfogenética Ósea 2/química , Preparaciones de Acción Retardada , Portadores de Fármacos , Hidrogeles/química , Nanopartículas/química , Animales , Composición de Medicamentos/métodos , Liberación de Fármacos , Fluoresceína-5-Isotiocianato/análogos & derivados , Fluoresceína-5-Isotiocianato/química , Humanos , Inyecciones , Cinética , Metacrilatos/química , Nanopartículas/ultraestructura , Transición de Fase , Poliésteres/química , Porosidad , Albúmina Sérica Bovina/química , Dióxido de Silicio/química , Soluciones
5.
Polymers (Basel) ; 8(1)2016 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-30979116

RESUMEN

The focus in the field of biomedical engineering has shifted in recent years to biodegradable polymers and, in particular, polyesters. Dozens of polyester-based medical devices are commercially available, and every year more are introduced to the market. The mechanical performance and wide range of biodegradation properties of this class of polymers allow for high degrees of selectivity for targeted clinical applications. Recent research endeavors to expand the application of polymers have been driven by a need to target the general hydrophobic nature of polyesters and their limited cell motif sites. This review provides a comprehensive investigation into advanced strategies to modify polyesters and their clinical potential for future biomedical applications.

6.
ACS Appl Mater Interfaces ; 7(40): 22421-30, 2015 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-26376751

RESUMEN

The acidic nature of the degradation products of polyesters often leads to unpredictable clinical complications, such as necrosis of host tissues and massive immune cell invasions. In this study, poly(propylene carbonate) (PPC) and starch composite is introduced with superior characteristics as an alternative to polyester-based polymers. The degradation products of PPC-starch composites are mainly carbon dioxide and water; hence, the associated risks to the acidic degradation of polyesters are minimized. Moreover, the compression strength of PPC-starch composites can be tuned over the range of 0.2±0.03 MPa to 33.9±1.51 MPa by changing the starch contents of composites to address different clinical needs. More importantly, the addition of 50 wt % starch enhances the thermal processing capacity of the composites by elevating their decomposition temperature from 245 to 276 °C. Therefore, thermal processing methods, such as extrusion and hot melt compression methods can be used to generate different shapes and structures from PPC-starch composites. We also demonstrated the cytocompatibility and biocompatibility of these composites by conducting in vitro and in vivo tests. For instance, the numbers of osteoblast cells were increased 2.5 fold after 7 days post culture. In addition, PPC composites in subcutaneous mice model resulted in mild inflammatory responses (e.g., the formation of fibrotic tissue) that were diminished from two to 4 weeks postimplantation. The long-term in vivo biodegradation of PPC composites are compared with poly(lactic acid) (PLA). The histochemical analysis revealed that after 8 weeks, the biodegradation of PLA leads to massive immune cell infusion and inflammation at the site, whereas the PPC composites are well-tolerated in vivo. All these results underline the favorable properties of PPC-starch composites as a benign biodegradable biomaterial for fabrication of biomedical implants.


Asunto(s)
Materiales Biocompatibles/química , Ácido Láctico/química , Polímeros/química , Polipropilenos/química , Animales , Materiales Biocompatibles/farmacología , Rastreo Diferencial de Calorimetría , Adhesión Celular/efectos de los fármacos , Línea Celular , Proliferación Celular/efectos de los fármacos , Módulo de Elasticidad , Humanos , Masculino , Ratones , Ratones Endogámicos BALB C , Poliésteres , Prótesis e Implantes , Espectroscopía Infrarroja por Transformada de Fourier , Almidón/química , Termogravimetría
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA