Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Microcirculation ; 29(6-7): e12770, 2022 10.
Artículo en Inglés | MEDLINE | ID: mdl-35611457

RESUMEN

OBJECTIVE: Monitoring microcirculation and visualizing microvasculature are critical for providing diagnosis to medical professionals and guiding clinical interventions. Ultrasound provides a medium for monitoring and visualization; however, there are challenges due to the complex microscale geometry of the vasculature and difficulties associated with quantifying perfusion. Here, we studied established and state-of-the-art ultrasonic modalities (using six probes) to compare their detection of slow flow in small microvasculature. METHODS: Five ultrasonic modalities were studied: grayscale, color Doppler, power Doppler, superb microvascular imaging (SMI), and microflow imaging (MFI), using six linear probes across two ultrasound scanners. Image readability was blindly scored by radiologists and quantified for evaluation. Vasculature visualization was investigated both in vitro (resolution and flow characterization) and in vivo (fingertip microvasculature detection). RESULTS: Superb Microvascular Imaging (SMI) and Micro Flow Imaging (MFI) modalities provided superior images when compared with conventional ultrasound imaging modalities both in vitro and in vivo. The choice of probe played a significant difference in detectability. The slowest flow detected (in the lab) was 0.1885 ml/s and small microvasculature of the fingertip were visualized. CONCLUSIONS: Our data demonstrated that SMI and MFI used with vascular probes operating at higher frequencies provided resolutions acceptable for microvasculature visualization, paving the path for future development of ultrasound devices for microcirculation monitoring.


Asunto(s)
Microvasos , Ultrasonografía Doppler , Microcirculación , Ultrasonografía/métodos , Microvasos/diagnóstico por imagen , Ultrasonografía Doppler/métodos
2.
J Craniofac Surg ; 30(5): 1456-1461, 2019 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-31299743

RESUMEN

BACKGROUND: Previously, sonographic evaluation of the intracranial contents was limited to intraoperative use following bone flap removal, with placement of the probe directly on the cortical surface or through a transsulcal tubular retractor. Cranioplasty with sonolucent implants may represent a postoperative window into the brain by allowing ultrasound to serve as a novel bedside imaging modality. The potential sonolucency of various commonly used cranial implant types was examined in this study. METHODS: A 3-phase study was comprised of cadaveric evaluation of transcranioplasty ultrasound (TCU) with cranioplasty implants of varying materials, intraoperative TCU during right-sided cranioplasty with clear implant made of poly-methyl-methacrylate (PMMA), and bedside TCU on postoperative day 5 after cranioplasty. RESULTS: The TCU through clear PMMA, polyether-ether-ketone, and opaque PMMA cranial implants revealed implant sonoluceny, in contrast to autologous bone and porous-polyethylene. Intraoperative ultrasound via the clear PMMA implant in a single patient revealed recognizable ventricular anatomy. Furthermore, postoperative bedside ultrasound in the same patient revealed comparable ventricular anatomy and a small epidural fluid collection corresponding to that visualized on an axial computed tomography scan. CONCLUSION: Sonolucent cranial implants, such as those made of clear PMMA, hold great promise for enhanced diagnostic and therapeutic applications previously limited by cranial bone. Furthermore, as functional cranial implants are manufactured with implantable devices housed within clear PMMA, the possibility of utilizing ultrasound for real-time surveillance of intracranial pathology becomes much more feasible.


Asunto(s)
Prótesis e Implantes , Adulto , Cadáver , Humanos , Masculino , Polimetil Metacrilato/uso terapéutico , Porosidad , Periodo Posoperatorio , Cráneo/cirugía , Tomografía Computarizada por Rayos X , Terapia por Ultrasonido
3.
J Craniofac Surg ; 30(7): e626-e629, 2019 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-31188246

RESUMEN

BACKGROUND: Current methods of transcranial diagnostic ultrasound imaging are limited by the skull's acoustic properties. Craniotomy, craniectomy, and cranioplasty procedures present opportunities to circumvent these limitations by substituting autologous bone with synthetic cranial implants composed of sonolucent biomaterials. OBJECTIVE: This study examined the potential to image the brain using transcranioplasty ultrasound (TCU) through a sonolucent cranial implant. MATERIALS AND METHODS: A validated adult brain phantom was imaged using computed tomography (CT), magnetic resonance imaging (MRI), and ultrasound without an implant. Next, for experimental comparison, TCU was performed through a sonolucent implant composed of clear polymethyl methacrylate. RESULTS: All imaging modalities successfully revealed elements of the brain phantom, including the bilateral ventricular system, the falx cerebri, and a deep hyperdense mass representing a brain tumor or hematoma. In addition, ultrasound images were captured which closely resembled axial images obtained with both CT and MRI. CONCLUSION: The results obtained in this first-ever, preclinical, phantom study suggest TCU is now a viable immediate and long-term diagnostic imaging modality deserving of further clinical investigation.


Asunto(s)
Polimetil Metacrilato , Prótesis e Implantes , Cráneo/diagnóstico por imagen , Encéfalo/diagnóstico por imagen , Encéfalo/cirugía , Craneotomía/métodos , Humanos , Imagen por Resonancia Magnética , Fantasmas de Imagen , Cráneo/cirugía , Tomografía Computarizada por Rayos X , Ultrasonografía
4.
J Vis Exp ; (207)2024 May 03.
Artículo en Inglés | MEDLINE | ID: mdl-38767374

RESUMEN

The neuromodulatory effects of focused ultrasound (FUS) have been demonstrated in animal models, and FUS has been used successfully to treat movement and psychiatric disorders in humans. However, despite the success of FUS, the mechanism underlying its effects on neurons remains poorly understood, making treatment optimization by tuning FUS parameters difficult. To address this gap in knowledge, we studied human neurons in vitro using neurons cultured from human-induced pluripotent stem cells (HiPSCs). Using HiPSCs allows for the study of human-specific neuronal behaviors in both physiologic and pathologic states. This report presents a protocol for using a high-throughput system that enables the monitoring and quantification of the neuromodulatory effects of FUS on HiPSC neurons. By varying the FUS parameters and manipulating the HiPSC neurons through pharmaceutical and genetic modifications, researchers can evaluate the neural responses and elucidate the neuro-modulatory effects of FUS on HiPSC neurons. This research could have significant implications for the development of safe and effective FUS-based therapies for a range of neurological and psychiatric disorders.


Asunto(s)
Células Madre Pluripotentes Inducidas , Microelectrodos , Neuronas , Humanos , Neuronas/fisiología , Neuronas/citología , Células Madre Pluripotentes Inducidas/citología , Ondas Ultrasónicas
5.
Sci Rep ; 14(1): 714, 2024 01 06.
Artículo en Inglés | MEDLINE | ID: mdl-38184676

RESUMEN

Ultrasound technology can provide high-resolution imaging of blood flow following spinal cord injury (SCI). Blood flow imaging may improve critical care management of SCI, yet its duration is limited clinically by the amount of contrast agent injection required for high-resolution, continuous monitoring. In this study, we aim to establish non-contrast ultrasound as a clinically translatable imaging technique for spinal cord blood flow via comparison to contrast-based methods and by measuring the spatial distribution of blood flow after SCI. A rodent model of contusion SCI at the T12 spinal level was carried out using three different impact forces. We compared images of spinal cord blood flow taken using both non-contrast and contrast-enhanced ultrasound. Subsequently, we processed the images as a function of distance from injury, yielding the distribution of blood flow through space after SCI, and found the following. (1) Both non-contrast and contrast-enhanced imaging methods resulted in similar blood flow distributions (Spearman's ρ = 0.55, p < 0.0001). (2) We found an area of decreased flow at the injury epicenter, or umbra (p < 0.0001). Unexpectedly, we found increased flow at the periphery, or penumbra (rostral, p < 0.05; caudal, p < 0.01), following SCI. However, distal flow remained unchanged, in what is presumably unaffected tissue. (3) Finally, tracking blood flow in the injury zones over time revealed interesting dynamic changes. After an initial decrease, blood flow in the penumbra increased during the first 10 min after injury, while blood flow in the umbra and distal tissue remained constant over time. These results demonstrate the viability of non-contrast ultrasound as a clinical monitoring tool. Furthermore, our surprising observations of increased flow in the injury periphery pose interesting new questions about how the spinal cord vasculature reacts to SCI, with potentially increased significance of the penumbra.


Asunto(s)
Contusiones , Traumatismos de la Médula Espinal , Humanos , Traumatismos de la Médula Espinal/diagnóstico por imagen , Ultrasonografía , Procesamiento de Imagen Asistido por Computador
6.
Spine J ; 24(3): 435-445, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-37890727

RESUMEN

BACKGROUND CONTEXT: The optimal decompression time for patients presenting with acute traumatic central cord syndrome (ATCCS) has been debated, and a high level of evidence is lacking. PURPOSE: To compare early (<24 hours) versus late (≥24 hours) surgical decompression for ATCCS. STUDY DESIGN: Systematic review and meta-analysis. METHODS: Medline, PubMed, Embase, and CENTRAL were searched from inception to March 15th, 2023. The primary outcome was American Spinal Injury Association (ASIA) motor score. Secondary outcomes were venous thromboembolism (VTE), total complications, overall mortality, hospital length of stay (LOS), and ICU LOS. The GRADE approach determined certainty in evidence. RESULTS: The nine studies included reported on 5,619 patients, of whom 2,099 (37.35%) underwent early decompression and 3520 (62.65%) underwent late decompression. The mean age (53.3 vs 56.2 years, p=.505) and admission ASIA motor score (mean difference [MD]=-0.31 [-3.61, 2.98], p=.85) were similar between the early and late decompression groups. At 6-month follow-up, the two groups were similar in ASIA motor score (MD= -3.30 [-8.24, 1.65], p=.19). However, at 1-year follow-up, the early decompression group had a higher ASIA motor score than the late decompression group in total (MD=4.89 [2.89, 6.88], p<.001, evidence: moderate), upper extremities (MD=2.59 [0.82, 4.36], p=.004) and lower extremities (MD=1.08 [0.34, 1.83], p=.004). Early decompression was also associated with lower VTE (odds ratio [OR]=0.41 [0.26, 0.65], p=.001, evidence: moderate), total complications (OR=0.53 [0.42, 0.67], p<.001, evidence: moderate), and hospital LOS (MD=-2.94 days [-3.83, -2.04], p<.001, evidence: moderate). Finally, ICU LOS (MD=-0.69 days [-1.65, 0.28], p=.16, evidence: very low) and overall mortality (OR=1.35 [0.93, 1.94], p=.11, evidence: moderate) were similar between the two groups. CONCLUSIONS: The meta-analysis of these studies demonstrated that early decompression was beneficial in terms of ASIA motor score, VTE, complications, and hospital LOS. Furthermore, early decompression did not increase mortality odds. Although treatment decision-making has been individualized, early decompression should be considered for patients presenting with ATCCS, provided that the surgeon deems it appropriate.


Asunto(s)
Síndrome del Cordón Central , Traumatismos de la Médula Espinal , Tromboembolia Venosa , Humanos , Persona de Mediana Edad , Síndrome del Cordón Central/cirugía , Descompresión Quirúrgica/efectos adversos , Traumatismos de la Médula Espinal/cirugía , Columna Vertebral/cirugía
7.
Commun Med (Lond) ; 4(1): 4, 2024 Jan 05.
Artículo en Inglés | MEDLINE | ID: mdl-38182729

RESUMEN

BACKGROUND: Tension in the spinal cord is a trademark of tethered cord syndrome. Unfortunately, existing tests cannot quantify tension across the bulk of the cord, making the diagnostic evaluation of stretch ambiguous. A potential non-destructive metric for spinal cord tension is ultrasound-derived shear wave velocity (SWV). The velocity is sensitive to tissue elasticity and boundary conditions including strain. We use the term Ultrasound Tensography to describe the acoustic evaluation of tension with SWV. METHODS: Our solution Tethered cord Assessment with Ultrasound Tensography (TAUT) was utilized in three sub-studies: finite element simulations, a cadaveric benchtop validation, and a neurosurgical case series. The simulation computed SWV for given tensile forces. The cadaveric model with induced tension validated the SWV-tension relationship. Lastly, SWV was measured intraoperatively in patients diagnosed with tethered cords who underwent treatment (spinal column shortening). The surgery alleviates tension by decreasing the vertebral column length. RESULTS: Here we observe a strong linear relationship between tension and squared SWV across the preclinical sub-studies. Higher tension induces faster shear waves in the simulation (R2 = 0.984) and cadaveric (R2 = 0.951) models. The SWV decreases in all neurosurgical procedures (p < 0.001). Moreover, TAUT has a c-statistic of 0.962 (0.92-1.00), detecting all tethered cords. CONCLUSIONS: This study presents a physical, clinical metric of spinal cord tension. Strong agreement among computational, cadaveric, and clinical studies demonstrates the utility of ultrasound-induced SWV for quantitative intraoperative feedback. This technology is positioned to enhance tethered cord diagnosis, treatment, and postoperative monitoring as it differentiates stretched from healthy cords.


Tethered spinal cord syndrome occurs when surrounding tissue attaches to and causes stretching across the spinal cord. People with a tethered cord can experience weakness, pain, and loss of bladder control. Although increased tension in the spinal cord is known to cause these symptoms, evaluating the amount of stretching remains challenging. We investigated the ability of an ultrasound imaging approach to measure spinal cord tension. We studied our method in a computer simulation, a benchtop validation model, and in six people with tethered cords during surgery that they were undergoing to reduce tension. In each phase, the approach could detect differences between stretched spinal cords and spinal cords in a healthy state. Our method could potentially be used in the future to improve the care of people with a tethered cord.

8.
Front Med Technol ; 5: 1238129, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37854637

RESUMEN

Tissue elasticity remains an essential biomarker of health and is indicative of irregularities such as tumors or infection. The timely detection of such abnormalities is crucial for the prevention of disease progression and complications that arise from late-stage illnesses. However, at both the bedside and the operating table, there is a distinct lack of tactile feedback for deep-seated tissue. As surgical techniques advance toward remote or minimally invasive options to reduce infection risk and hasten healing time, surgeons lose the ability to manually palpate tissue. Furthermore, palpation of deep structures results in decreased accuracy, with the additional barrier of needing years of experience for adequate confidence of diagnoses. This review delves into the current modalities used to fulfill the clinical need of quantifying physical touch. It covers research efforts involving tactile sensing for remote or minimally invasive surgeries, as well as the potential of ultrasound elastography to further this field with non-invasive real-time imaging of the organ's biomechanical properties. Elastography monitors tissue response to acoustic or mechanical energy and reconstructs an image representative of the elastic profile in the region of interest. This intuitive visualization of tissue elasticity surpasses the tactile information provided by sensors currently used to augment or supplement manual palpation. Focusing on common ultrasound elastography modalities, we evaluate various sensing mechanisms used for measuring tactile information and describe their emerging use in clinical settings where palpation is insufficient or restricted. With the ongoing advancements in ultrasound technology, particularly the emergence of micromachined ultrasound transducers, these devices hold great potential in facilitating early detection of tissue abnormalities and providing an objective measure of patient health.

9.
J Vis Exp ; (192)2023 02 10.
Artículo en Inglés | MEDLINE | ID: mdl-36847383

RESUMEN

Sonodynamic therapy (SDT) is an application of focused ultrasound (FUS) that enables a sonosensitizing agent to prime tumors for increased sensitivity during sonication. Unfortunately, current clinical treatments for glioblastoma (GBM) are lacking, leading to low long-term survival rates among patients. SDT is a promising method for treating GBM in an effective, noninvasive, and tumor-specific manner. Sonosensitizers preferentially enter tumor cells compared to the surrounding brain parenchyma. The application of FUS in the presence of a sonosensitizing agent generates reactive oxidative species resulting in apoptosis. Although this therapy has been shown previously to be effective in preclinical studies, there is a lack of established standardized parameters. Standardized methods are necessary to optimize this therapeutic strategy for preclinical and clinical use. In this paper, we detail the protocol to perform SDT in a preclinical GBM rodent model using magnetic resonance-guided FUS (MRgFUS). MRgFUS is an important feature of this protocol, as it allows for specific targeting of a brain tumor without the need for invasive surgeries (e.g., craniotomy). The benchtop device used here can focus on a specific location in three dimensions by clicking on a target on an MRI image, making target selection a straightforward process. This protocol will provide researchers with a standardized preclinical method for MRgFUS SDT, with the added flexibility to change and optimize parameters for translational research.


Asunto(s)
Neoplasias Encefálicas , Glioblastoma , Terapia por Ultrasonido , Ratones , Animales , Glioblastoma/diagnóstico por imagen , Glioblastoma/terapia , Ultrasonografía , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/tratamiento farmacológico , Encéfalo/patología , Terapia por Ultrasonido/métodos , Línea Celular Tumoral
10.
ArXiv ; 2023 Sep 26.
Artículo en Inglés | MEDLINE | ID: mdl-37808091

RESUMEN

While significant advancements in artificial intelligence (AI) have catalyzed progress across various domains, its full potential in understanding visual perception remains underexplored. We propose an artificial neural network dubbed VISION, an acronym for "Visual Interface System for Imaging Output of Neural activity," to mimic the human brain and show how it can foster neuroscientific inquiries. Using visual and contextual inputs, this multimodal model predicts the brain's functional magnetic resonance imaging (fMRI) scan response to natural images. VISION successfully predicts human hemodynamic responses as fMRI voxel values to visual inputs with an accuracy exceeding state-of-the-art performance by 45%. We further probe the trained networks to reveal representational biases in different visual areas, generate experimentally testable hypotheses, and formulate an interpretable metric to associate these hypotheses with cortical functions. With both a model and evaluation metric, the cost and time burdens associated with designing and implementing functional analysis on the visual cortex could be reduced. Our work suggests that the evolution of computational models may shed light on our fundamental understanding of the visual cortex and provide a viable approach toward reliable brain-machine interfaces.

11.
J Vis Exp ; (193)2023 03 10.
Artículo en Inglés | MEDLINE | ID: mdl-36971451

RESUMEN

Low-intensity focused ultrasound (LIFU) uses ultrasonic pulsations at lower intensities than ultrasound and is being tested as a reversible and precise neuromodulatory technology. Although LIFU-mediated blood-brain barrier (BBB) opening has been explored in detail, no standardized technique for blood-spinal cord barrier (BSCB) opening has been established to date. Therefore, this protocol presents a method for successful BSCB disruption using LIFU sonication in a rat model, including descriptions of animal preparation, microbubble administration, target selection and localization, as well as BSCB disruption visualization and confirmation. The approach reported here is particularly useful for researchers who need a fast and cost-effective method to test and confirm target localization and precise BSCB disruption in a small animal model with a focused ultrasound transducer, evaluate the BSCB efficacy of sonication parameters, or explore applications for LIFU at the spinal cord, such as drug delivery, immunomodulation, and neuromodulation. Optimizing this protocol for individual use is recommended, especially for advancing future preclinical, clinical, and translational work.


Asunto(s)
Traumatismos de la Médula Espinal , Médula Espinal , Ratas , Animales , Médula Espinal/diagnóstico por imagen , Ultrasonografía , Barrera Hematoencefálica/diagnóstico por imagen , Modelos Animales
12.
IEEE Trans Biomed Eng ; 70(7): 1992-2001, 2023 07.
Artículo en Inglés | MEDLINE | ID: mdl-37018313

RESUMEN

OBJECTIVE: Here we investigate the ability of low-intensity ultrasound (LIUS) applied to the spinal cord to modulate the transmission of motor signals. METHODS: Male adult Sprague-Dawley rats (n = 10, 250-300 g, 15 weeks old) were used in this study. Anesthesia was initially induced with 2% isoflurane carried by oxygen at 4 L/min via a nose cone. Cranial, upper extremity, and lower extremity electrodes were placed. A thoracic laminectomy was performed to expose the spinal cord at the T11 and T12 vertebral levels. A LIUS transducer was coupled to the exposed spinal cord, and motor evoked potentials (MEPs) were acquired each minute for either 5- or 10-minutes of sonication. Following the sonication period, the ultrasound was turned off and post-sonication MEPs were acquired for an additional 5 minutes. RESULTS: Hindlimb MEP amplitude significantly decreased during sonication in both the 5- (p < 0.001) and 10-min (p = 0.004) cohorts with a corresponding gradual recovery to baseline. Forelimb MEP amplitude did not demonstrate any statistically significant changes during sonication in either the 5- (p = 0.46) or 10-min (p = 0.80) trials. CONCLUSION: LIUS applied to the spinal cord suppresses MEP signals caudal to the site of sonication, with recovery of MEPs to baseline after sonication. SIGNIFICANCE: LIUS can suppress motor signals in the spinal cord and may be useful in treating movement disorders driven by excessive excitation of spinal neurons.


Asunto(s)
Potenciales Evocados Motores , Traumatismos de la Médula Espinal , Ratas , Animales , Masculino , Potenciales Evocados Motores/fisiología , Ratas Sprague-Dawley , Médula Espinal/fisiología , Columna Vertebral , Potenciales Evocados
13.
J Acoust Soc Am ; 132(3): EL222-8, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22979836

RESUMEN

The identification of fast and slow waves propagating through trabecular bone is a challenging task due to temporal wave overlap combined with the high attenuation of the fast wave in the presence of noise. However, it can provide valuable information about bone integrity and become a means for monitoring osteoporosis. The objective of this work is to apply different coded excitation methods for this purpose. The results for single-sine cycle pulse, Golay code, and chirp excitations are compared. It is shown that Golay code is superior to the other techniques due to its signal enhancement while exhibiting excellent resolution without the ambiguity of sidelobes.


Asunto(s)
Huesos/diagnóstico por imagen , Interpretación de Imagen Asistida por Computador/métodos , Modelos Teóricos , Osteoporosis/diagnóstico por imagen , Procesamiento de Señales Asistido por Computador , Humanos , Movimiento (Física) , Sonido , Factores de Tiempo , Ultrasonografía
14.
Cancers (Basel) ; 14(19)2022 Oct 08.
Artículo en Inglés | MEDLINE | ID: mdl-36230843

RESUMEN

Glioblastoma (GBM) is an aggressive primary astrocytoma associated with short overall survival. Treatment for GBM primarily consists of maximal safe surgical resection, radiation therapy, and chemotherapy using temozolomide. Nonetheless, recurrence and tumor progression is the norm, driven by tumor stem cell activity and a high mutational burden. Focused ultrasound (FUS) has shown promising results in preclinical and clinical trials for treatment of GBM and has received regulatory approval for the treatment of other neoplasms. Here, we review the range of applications for FUS in the treatment of GBM, which depend on parameters, including frequency, power, pulse duration, and duty cycle. Low-intensity FUS can be used to transiently open the blood-brain barrier (BBB), which restricts diffusion of most macromolecules and therapeutic agents into the brain. Under guidance from magnetic resonance imaging, the BBB can be targeted in a precise location to permit diffusion of molecules only at the vicinity of the tumor, preventing side effects to healthy tissue. BBB opening can also be used to improve detection of cell-free tumor DNA with liquid biopsies, allowing non-invasive diagnosis and identification of molecular mutations. High-intensity FUS can cause tumor ablation via a hyperthermic effect. Additionally, FUS can stimulate immunological attack of tumor cells, can activate sonosensitizers to exert cytotoxic effects on tumor tissue, and can sensitize tumors to radiation therapy. Finally, another mechanism under investigation, known as histotripsy, produces tumor ablation via acoustic cavitation rather than thermal effects.

15.
Front Oncol ; 12: 1072780, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36873300

RESUMEN

Glioblastoma multiforme (GBM) is a deadly and aggressive malignant brain cancer that is highly resistant to treatments. A particular challenge of treatment is caused by the blood-brain barrier (BBB), the relatively impermeable vasculature of the brain. The BBB prevents large molecules from entering the brain parenchyma. This protective characteristic of the BBB, however, also limits the delivery of therapeutic drugs for the treatment of brain tumors. To address this limitation, focused ultrasound (FUS) has been safely utilized to create transient openings in the BBB, allowing various high molecular weight drugs access to the brain. We performed a systematic review summarizing current research on treatment of GBMs using FUS-mediated BBB openings in in vivo mouse and rat models. The studies gathered here highlight how the treatment paradigm can allow for increased brain and tumor perfusion of drugs including chemotherapeutics, immunotherapeutics, gene therapeutics, nanoparticles, and more. Given the promising results detailed here, the aim of this review is to detail the commonly used parameters for FUS to open the BBB in rodent GBM models.

16.
IEEE Biomed Circuits Syst Conf ; 2022: 610-614, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-36695674

RESUMEN

Imaging of spinal cord microvasculature holds great potential in directing critical care management of spinal cord injury (SCI). Traditionally, contrast agents are preferred for imaging of the spinal cord vasculature, which is disadvantageous for long-term monitoring of injury. Here, we present FlowMorph, an algorithm that uses mathematical morphology techniques to segment non-contrast Doppler-based videos of rat spinal cord. Using the segmentation, it measures single-vessel parameters such as flow velocity, rate, and radius, with visible cardiac cycles in individual vessels showcasing the spatiotemporal resolution. The segmentation outlines vessels well with little extraneous labeling, and outlines are smooth through time. Radius measurements of perforating vessels are similar to what is seen in the literature through other methods. Verification of the algorithm through comparison to manual measurement and in vitro microphantom standards highlights points of future improvement. This method will be vital for future work studying the vascular effects of SCI and can be adopted to other species as well.

17.
Spine J ; 22(8): 1372-1387, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35351667

RESUMEN

Spinal cord injury (SCI) is a devastating condition that affects about 17,000 individuals every year in the United States, with approximately 294,000 people living with the ramifications of the initial injury. After the initial primary injury, SCI has a secondary phase during which the spinal cord sustains further injury due to ischemia, excitotoxicity, immune-mediated damage, mitochondrial dysfunction, apoptosis, and oxidative stress. The multifaceted injury progression process requires a sophisticated injury-monitoring technique for an accurate assessment of SCI patients. In this narrative review, we discuss SCI monitoring modalities, including pressure probes and catheters, micro dialysis, electrophysiologic measures, biomarkers, and imaging studies. The optimal next-generation injury monitoring setup should include multiple modalities and should integrate the data to produce a final simplified assessment of the injury and determine markers of intervention to improve patient outcomes.


Asunto(s)
Traumatismos de la Médula Espinal , Apoptosis , Biomarcadores , Humanos , Estrés Oxidativo , Médula Espinal , Traumatismos de la Médula Espinal/complicaciones
18.
Neurotrauma Rep ; 3(1): 352-368, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36204385

RESUMEN

Spinal cord injury (SCI) is a devastating disease with limited effective treatment options. Animal paradigms are vital for understanding the pathogenesis of SCI and testing potential therapeutics. The porcine model of SCI is increasingly favored because of its greater similarity to humans. However, its adoption is limited by the complexities of care and range of testing parameters. Researchers need to consider swine selection, injury method, post-operative care, rehabilitation, behavioral outcomes, and histology metrics. Therefore, we systematically reviewed full-text English-language articles to evaluate study characteristics used in developing a porcine model and summarize the interventions that have been tested using this paradigm. A total of 63 studies were included, with 33 examining SCI pathogenesis and 30 testing interventions. Studies had an average sample size of 15 pigs with an average weight of 26 kg, and most used female swine with injury to the thoracic cord. Injury was most commonly induced by weight drop with compression. The porcine model is amenable to testing various interventions, including mean arterial pressure augmentation (n = 7), electrical stimulation (n = 6), stem cell therapy (n = 5), hypothermia (n = 2), biomaterials (n = 2), gene therapy (n = 2), steroids (n = 1), and nanoparticles (n = 1). It is also notable for its clinical translatability and is emerging as a valuable pre-clinical study tool. This systematic review can serve as a guideline for researchers implementing and testing the porcine SCI model.

19.
Front Surg ; 9: 1040066, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36532130

RESUMEN

Objects accidentally left behind in the brain following neurosurgical procedures may lead to life-threatening health complications and invasive reoperation. One of the most commonly retained surgical items is the cotton ball, which absorbs blood to clear the surgeon's field of view yet in the process becomes visually indistinguishable from the brain parenchyma. However, using ultrasound imaging, the different acoustic properties of cotton and brain tissue result in two discernible materials. In this study, we created a fully automated foreign body object tracking algorithm that integrates into the clinical workflow to detect and localize retained cotton balls in the brain. This deep learning algorithm uses a custom convolutional neural network and achieves 99% accuracy, sensitivity, and specificity, and surpasses other comparable algorithms. Furthermore, the trained algorithm was implemented into web and smartphone applications with the ability to detect one cotton ball in an uploaded ultrasound image in under half of a second. This study also highlights the first use of a foreign body object detection algorithm using real in-human datasets, showing its ability to prevent accidental foreign body retention in a translational setting.

20.
J Clin Neurosci ; 104: 18-28, 2022 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-35933785

RESUMEN

Elastography is an imaging technology capable of measuring tissue stiffness and consistency. The technology has achieved widespread use in the workup and management of diseases of the liver, breast, thyroid, and prostate. Although elastography is increasingly being applied in neurosurgery, it has not yet achieved widespread adoption and many clinicians remain unfamiliar with the technology. Therefore, we sought to summarize the range of applications and elastography modalities available for neurosurgery, report its effectiveness in comparison with conventional imaging methods, and offer recommendations. All full-text English-language manuscripts on the use of elastography for neurosurgical procedures were screened using the PubMed/MEDLINE, Embase, Cochrane Library, Scopus, and Web of Science databases. Thirty-two studies were included with 990 patients, including 21 studies on intracranial tumors, 5 on hydrocephalus, 4 on epilepsy, 1 on spinal cord compression, and 1 on adolescent scoliosis. Twenty studies used ultrasound elastography (USE) whereas 12 used magnetic resonance elastography (MRE). MRE studies were mostly used in the preoperative setting for assessment of lesion stiffness, tumor-brain adherence, diagnostic workup, and operative planning. USE studies were performed intraoperatively to guide resection of lesions, determine residual microscopic abnormalities, assess the tumor-brain interface, and study mechanical properties of tumors. Elastography can assist with resection of brain tissue, detection of microscopic lesions, and workup of hydrocephalus, among other applications under investigation. Its sensitivity often exceeds that of conventional MRI and ultrasound for identifying abnormal tissue and lesion margins.


Asunto(s)
Diagnóstico por Imagen de Elasticidad , Hidrocefalia , Neurocirugia , Adolescente , Diagnóstico por Imagen de Elasticidad/métodos , Humanos , Hidrocefalia/diagnóstico por imagen , Hidrocefalia/cirugía , Imagen por Resonancia Magnética/métodos , Masculino , Procedimientos Neuroquirúrgicos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA