Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Food Sci Technol ; 60(8): 2121-2131, 2023 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-37273573

RESUMEN

Pullulan is a commercially available exopolymer biosynthesized by Aureobasidium pullulans supplemented with nitrogen, carbon and other vital components through submerged and solid-state fermentation. These nutrients are very expensive and it raises the cost for the production of pullulan. Hence, the need of alternative cost-effective raw materials for its production is a prerequisite. Owing to its unique physicochemical features, pullulan has various applications in the food, pharmacological, and biomedical domains. Food industrial wastes generate a considerable number of by-products which accumulates and has a negative influence on the environment. These by-products are made up of proteins, carbohydrates, and other components, can be employed as substrates for the production of pullulan. The present review briefs on the pullulan production using food processing waste and by-products and the elements that impact it. It provides an insight into versatile applications of pullulan in food industries. Various challenges and future prospects in the field of research on pullulan production have been uncovered.

2.
Adv Exp Med Biol ; 1391: 1-16, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36472813

RESUMEN

Oxidative stress (OS) and reactive oxygen species (ROS) are one of the main reasons for the multifactorial concern - male infertility. ROS are active components of cellular metabolism that are intrinsic to cellular functioning and are present at minimal and unreactive levels in normal cells. They are an integral component of the sperm developmental physiology, capacitation, and function. As said "anything in excess is poison," so is the case with ROS. These, when produced in excess to the antioxidants present in the seminal plasma, cause multiple malformations during the process of spermatogenesis such as lipid peroxidation, interfere with capacitation, sperm DNA fragmentation and damage to the membrane of the sperm which in turn reduces the motility of the sperm and its ability to fuse with the oocyte. Exposure of spermatozoa to oxidative stress is a major causative agent of male infertility. Thus, a delicate balance between the beneficial and detrimental effects of ROS for proper functions is of utter importance. In this chapter, the influence of ROS in OS which is a key player in male infertility along with the diagnosis, available treatment, and prevention of extensive ROS buildup within the spermatozoa are highlighted.


Asunto(s)
Infertilidad Masculina , Semen , Humanos , Masculino , Estrés Oxidativo
3.
Water Sci Technol ; 83(8): 1797-1812, 2021 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-33905353

RESUMEN

The rapid expansion of global trade and human activities has resulted in a massive increase in wastewater pollution into the atmosphere. Suspended solids, organic and inorganic particles, dissolved solids, heavy metals, dyes, and other impurities contained in wastewater from various sources are toxic to the atmosphere and pose serious health risks to humans and animals. Coagulation-flocculation technology is commonly used in wastewater treatment to remove cell debris, colloids, and contaminants in a comfortable and effective manner. Flocculants, both organic and inorganic, have long been used in wastewater treatment. However, because of their low performance, non-biodegradability, and associated health risks, their use has been limited. The use of eco-friendly bioflocculants in wastewater treatment has become essential due to the health implications of chemical flocculants. Because of their availability, biodegradability, and protection, plant-derived coagulants/flocculants and plant-based grafted bioflocculants have recently made significant progress in wastewater treatment. This study will undoubtedly provide a clearer understanding of the current state, challenges, and solutions for bioflocculation in wastewater remediation using green materials for the sake of a cleaner climate.


Asunto(s)
Metales Pesados , Purificación del Agua , Animales , Colorantes , Floculación , Humanos , Eliminación de Residuos Líquidos , Aguas Residuales
4.
Curr Med Chem ; 2024 Feb 07.
Artículo en Inglés | MEDLINE | ID: mdl-38333973

RESUMEN

Tumor diseases remain among the world's primary causes of death despite substantial advances in cancer diagnosis and treatment. The adverse chemotherapy problems and sensitivity towards drugs for some cancer types are among the most promising challenges in modern treatment. Finding new anti-cancer agents and drugs is, therefore, essential. A significant class of biologically active substances and prospective medications against cancer is comprised of bacterial proteins and peptides. Among these bacterial peptides, some of them, such as anti-cancer antibiotics and many toxins like diphtheria are widely being used in the treatment of cancer. In contrast, the remaining bacterial peptides are either in clinical trials or under research in vitro studies. This study includes the most recent information on the characteristics and mechanism of action of the bacterial peptides that have anti-cancer activities, some of which are now being employed in cancer therapy while some are still undergoing research.

5.
Biol Futur ; 73(3): 279-289, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-35976529

RESUMEN

Industrialization and urbanization are mainly responsible for environmental pollution generating enormous amount of wastewater which needs to be treated. Wastewaters from various sources are toxic to humans and livestock, as well as posing environmental risks. Various treatment approaches have been used for the elimination of contaminants from water and wastewater. Coagulation/flocculation processes are the most commonly used techniques in water treatment for improving the condition of turbid water and removing suspended particles by destabilization and the creation of larger, heavier flocs that aid in sedimentation. Flocculants, both organic and inorganic, have long been used in wastewater treatment. The use of natural coagulants/flocculants for water and wastewater treatment has become essential due to the health risks associated with chemical flocculants. Tannin, a natural coagulant, has been suggested as substitute of chemical coagulants. Tannins are present in the leaves, fruits, barks, roots, and wood of trees as a secondary metabolite. Tannin-based coagulants derived from a variety of plant sources have been successfully used in the treatment of water and wastewater. This review summarises the current status and strategies on applications of tannin-based coagulants exploiting the eco-friendly green materials in water and wastewater remediation for the sake of pollution free environment.


Asunto(s)
Aguas Residuales , Purificación del Agua , Benzopiranos , Floculación , Humanos , Taninos , Purificación del Agua/métodos
6.
Metabolites ; 12(1)2021 Dec 23.
Artículo en Inglés | MEDLINE | ID: mdl-35050134

RESUMEN

Perishable food spoilage caused by fungi is a major cause of discomfort for food producers. Food sensory abnormalities range from aesthetic degeneration to significant aroma, color, or consistency alterations due to this spoilage. Bio-preservation is the use of natural or controlled bacteria or antimicrobials to enhance the quality and safety of food. It has the ability to harmonize and rationalize the required safety requirements with conventional preservation methods and food production safety and quality demands. Even though synthetic preservatives could fix such issues, there is indeed a significant social need for "clean label" foods. As a result, consumers are now seeking foods that are healthier, less processed, and safer. The implementation of antifungal compounds has gotten a lot of attention in recent decades. As a result, the identification and characterization of such antifungal agents has made promising advances. The present state of information on antifungal molecules, their modes of activity, connections with specific target fungi varieties, and uses in food production systems are summarized in this review.

7.
3 Biotech ; 9(3): 86, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30800597

RESUMEN

Seven yeast isolates were screened for the remediation of indeno(1,2,3-cd)pyrene (InP) using biosynthesized iron nanoparticles and produced biosurfactant in growth medium. Four yeast isolates showed positive response to produce biosurfactant which was confirmed by drop collapse test, emulsification index, methylene blue agar plate method, oil displacement test and lipase activity. The yeast strain showing maximum potential for InP degradation and biosurfactant production was identified as Candida tropicalis NN4. The produced biosurfactant was characterized as sophorolipid type through TLC and FTIR analysis. Iron nanoparticles were biosynthesized using mint leaf extract and characterized by various instrumental analysis. Response surface methodology (RSM), three-level five-variable Box-Behnken design (BBD) was employed to optimize the factors, viz., pH (7), temperature (30 °C), salt concentration (1.5 g L-1), incubation time (15 days) and iron nanoparticles concentration (0.02 g L-1) for maximum InP degradation (90.68 ± 0.7%) using C. tropicalis NN4. It was well in close agreement with the predicted value which was obtained by RSM model (90.68 ± 0.4%) indicating the validity of the model. InP degradation was confirmed through FTIR and GC-MS analysis. A kinetic study demonstrated that InP degradation fitted first-order kinetic model. This is the first report on yeast-mediated nanobioremediation of InP and optimization of the whole process using RSM.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA