Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Nature ; 588(7837): 296-302, 2020 12.
Artículo en Inglés | MEDLINE | ID: mdl-33177716

RESUMEN

Perisynaptic astrocytic processes are an integral part of central nervous system synapses1,2; however, the molecular mechanisms that govern astrocyte-synapse adhesions and how astrocyte contacts control synapse formation and function are largely unknown. Here we use an in vivo chemico-genetic approach that applies a cell-surface fragment complementation strategy, Split-TurboID, and identify a proteome that is enriched at astrocyte-neuron junctions in vivo, which includes neuronal cell adhesion molecule (NRCAM). We find that NRCAM is expressed in cortical astrocytes, localizes to perisynaptic contacts and is required to restrict neuropil infiltration by astrocytic processes. Furthermore, we show that astrocytic NRCAM interacts transcellularly with neuronal NRCAM coupled to gephyrin at inhibitory postsynapses. Depletion of astrocytic NRCAM reduces numbers of inhibitory synapses without altering glutamatergic synaptic density. Moreover, loss of astrocytic NRCAM markedly decreases inhibitory synaptic function, with minor effects on excitation. Thus, our results present a proteomic framework for how astrocytes interface with neurons and reveal how astrocytes control GABAergic synapse formation and function.


Asunto(s)
Astrocitos/química , Astrocitos/metabolismo , Neuronas/metabolismo , Proteoma/metabolismo , Proteómica , Sinapsis/química , Sinapsis/metabolismo , Animales , Astrocitos/citología , Moléculas de Adhesión Celular Neuronal/metabolismo , Forma de la Célula , Femenino , Neuronas GABAérgicas/citología , Neuronas GABAérgicas/metabolismo , Prueba de Complementación Genética , Células HEK293 , Humanos , Masculino , Ratones , Inhibición Neural , Neuronas/citología , Ácido gamma-Aminobutírico/metabolismo
2.
Genes Dev ; 29(24): 2617-32, 2015 Dec 15.
Artículo en Inglés | MEDLINE | ID: mdl-26680304

RESUMEN

Commissural axon guidance depends on a myriad of cues expressed by intermediate targets. Secreted semaphorins signal through neuropilin-2/plexin-A1 receptor complexes on post-crossing commissural axons to mediate floor plate repulsion in the mouse spinal cord. Here, we show that neuropilin-2/plexin-A1 are also coexpressed on commissural axons prior to midline crossing and can mediate precrossing semaphorin-induced repulsion in vitro. How premature semaphorin-induced repulsion of precrossing axons is suppressed in vivo is not known. We discovered that a novel source of floor plate-derived, but not axon-derived, neuropilin-2 is required for precrossing axon pathfinding. Floor plate-specific deletion of neuropilin-2 significantly reduces the presence of precrossing axons in the ventral spinal cord, which can be rescued by inhibiting plexin-A1 signaling in vivo. Our results show that floor plate-derived neuropilin-2 is developmentally regulated, functioning as a molecular sink to sequester semaphorins, preventing premature repulsion of precrossing axons prior to subsequent down-regulation, and allowing for semaphorin-mediated repulsion of post-crossing axons.


Asunto(s)
Axones/fisiología , Interneuronas Comisurales/fisiología , Neuropilina-2/metabolismo , Semaforinas/metabolismo , Animales , Células Cultivadas , Interneuronas Comisurales/citología , Embrión de Mamíferos , Eliminación de Gen , Regulación del Desarrollo de la Expresión Génica , Ratones , Proteínas del Tejido Nervioso/genética , Proteínas del Tejido Nervioso/metabolismo , Neuropilina-2/genética , Receptores de Superficie Celular/genética , Receptores de Superficie Celular/metabolismo , Transducción de Señal
3.
Cereb Cortex ; 30(8): 4689-4707, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32249896

RESUMEN

Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


Asunto(s)
Interneuronas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Corteza Prefrontal/metabolismo , Sinapsis/fisiología , Animales , Conducta Animal , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/crecimiento & desarrollo
4.
J Neurosci ; 39(32): 6233-6250, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182634

RESUMEN

Dendritic spines in the developing mammalian neocortex are initially overproduced and then eliminated during adolescence to achieve appropriate levels of excitation in mature networks. We show here that the L1 family cell adhesion molecule Close Homolog of L1 (CHL1) and secreted repellent ligand Semaphorin 3B (Sema3B) function together to induce dendritic spine pruning in developing cortical pyramidal neurons. Loss of CHL1 in null mutant mice in both genders resulted in increased spine density and a greater proportion of immature spines on apical dendrites in the prefrontal and visual cortex. Electron microscopy showed that excitatory spine synapses with postsynaptic densities were increased in the CHL1-null cortex, and electrophysiological recording in prefrontal slices from mutant mice revealed deficiencies in excitatory synaptic transmission. Mechanistically, Sema3B protein induced elimination of spines on apical dendrites of cortical neurons cultured from wild-type but not CHL1-null embryos. Sema3B was secreted by the cortical neuron cultures, and its levels increased when cells were treated with the GABA antagonist gabazine. In vivo CHL1 was coexpressed with Sema3B in pyramidal neuron subpopulations and formed a complex with Sema3B receptor subunits Neuropilin-2 and PlexinA4. CHL1 and NrCAM, a closely related L1 adhesion molecule, localized primarily to distinct spines and promoted spine elimination to Sema3B or Sema3F, respectively. These results support a new concept in which selective spine elimination is achieved through different secreted semaphorins and L1 family adhesion molecules to sculpt functional neural circuits during postnatal maturation.SIGNIFICANCE STATEMENT Dendritic spines in the mammalian neocortex are initially overproduced and then pruned in adolescent life through unclear mechanisms to sculpt maturing cortical circuits. Here, we show that spine and excitatory synapse density of pyramidal neurons in the developing neocortex is regulated by the L1 adhesion molecule, Close Homolog of L1 (CHL1). CHL1 mediated spine pruning in response to the secreted repellent ligand Semaphorin 3B and associated with receptor subunits Neuropilin-2 and PlexinA4. CHL1 and related L1 adhesion molecule NrCAM localized to distinct spines, and promoted spine elimination to Semaphorin 3B and -3F, respectively. These results support a new concept in which selective elimination of individual spines and nascent synapses can be achieved through the action of distinct secreted semaphorins and L1 adhesion molecules.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Corteza Prefrontal/fisiología , Semaforinas/fisiología , Corteza Visual/fisiología , Envejecimiento/fisiología , Animales , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Femenino , Agonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Neuropilina-2/fisiología , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Mapeo de Interacción de Proteínas , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Piridazinas/farmacología , Receptores de Superficie Celular/fisiología , Transmisión Sináptica , Corteza Visual/citología , Corteza Visual/crecimiento & desarrollo
5.
Cereb Cortex ; 29(3): 963-977, 2019 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29415226

RESUMEN

Neuron-glial related cell adhesion molecule NrCAM is a newly identified negative regulator of spine density that genetically interacts with Semaphorin3F (Sema3F), and is implicated in autism spectrum disorders (ASD). To investigate a role for NrCAM in spine pruning during the critical adolescent period when networks are established, we generated novel conditional, inducible NrCAM mutant mice (Nex1Cre-ERT2: NrCAMflox/flox). We demonstrate that NrCAM functions cell autonomously during adolescence in pyramidal neurons to restrict spine density in the visual (V1) and medial frontal cortex (MFC). Guided by molecular modeling, we found that NrCAM promoted clustering of the Sema3F holoreceptor complex by interfacing with Neuropilin-2 (Npn2) and PDZ scaffold protein SAP102. NrCAM-induced receptor clustering stimulated the Rap-GAP activity of PlexinA3 (PlexA3) within the holoreceptor complex, which in turn, inhibited Rap1-GTPase and inactivated adhesive ß1 integrins, essential for Sema3F-induced spine pruning. These results define a developmental function for NrCAM in Sema3F receptor signaling that limits dendritic spine density on cortical pyramidal neurons during adolescence.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Lóbulo Frontal/crecimiento & desarrollo , Proteínas de la Membrana/fisiología , Proteínas del Tejido Nervioso/fisiología , Células Piramidales/fisiología , Corteza Visual/crecimiento & desarrollo , Animales , Guanilato-Quinasas/fisiología , Ratones Transgénicos , Modelos Moleculares , Transducción de Señal
6.
Dev Dyn ; 247(7): 934-950, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29536590

RESUMEN

BACKGROUND: In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS: Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS: NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Tipificación del Cuerpo/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Moléculas de Adhesión Celular/metabolismo , Cóclea/inervación , Células Receptoras Sensoriales/química , Animales , Orientación del Axón , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/fisiología , Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas , Ratones , Ganglio Espiral de la Cóclea
7.
J Biol Chem ; 291(51): 26262-26272, 2016 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-27803162

RESUMEN

Establishment of a proper balance of excitatory and inhibitory connectivity is achieved during development of cortical networks and adjusted through synaptic plasticity. The neural cell adhesion molecule (NCAM) and the receptor tyrosine kinase EphA3 regulate the perisomatic synapse density of inhibitory GABAergic interneurons in the mouse frontal cortex through ephrin-A5-induced growth cone collapse. In this study, it was demonstrated that binding of NCAM and EphA3 occurred between the NCAM Ig2 domain and EphA3 cysteine-rich domain (CRD). The binding interface was further refined through molecular modeling and mutagenesis and shown to be comprised of complementary charged residues in the NCAM Ig2 domain (Arg-156 and Lys-162) and the EphA3 CRD (Glu-248 and Glu-264). Ephrin-A5 induced co-clustering of surface-bound NCAM and EphA3 in GABAergic cortical interneurons in culture. Receptor clustering was impaired by a charge reversal mutation that disrupted NCAM/EphA3 association, emphasizing the importance of the NCAM/EphA3 binding interface for cluster formation. NCAM enhanced ephrin-A5-induced EphA3 autophosphorylation and activation of RhoA GTPase, indicating a role for NCAM in activating EphA3 signaling through clustering. NCAM-mediated clustering of EphA3 was essential for ephrin-A5-induced growth cone collapse in cortical GABAergic interneurons, and RhoA and a principal effector, Rho-associated protein kinase, mediated the collapse response. This study delineates a mechanism in which NCAM promotes ephrin-A5-dependent clustering of EphA3 through interaction of the NCAM Ig2 domain and the EphA3 CRD, stimulating EphA3 autophosphorylation and RhoA signaling necessary for growth cone repulsion in GABAergic interneurons in vitro, which may extend to remodeling of axonal terminals of interneurons in vivo.


Asunto(s)
Neuronas GABAérgicas/metabolismo , Conos de Crecimiento/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptor EphA3/metabolismo , Transducción de Señal/fisiología , Proteínas de Unión al GTP rho/metabolismo , Quinasas Asociadas a rho/metabolismo , Animales , Efrina-A5/genética , Efrina-A5/metabolismo , Ratones , Ratones Mutantes , Moléculas de Adhesión de Célula Nerviosa/genética , Fosforilación/fisiología , Proteínas de Unión al GTP rho/genética , Quinasas Asociadas a rho/genética , Proteína de Unión al GTP rhoA
8.
J Neurosci ; 34(34): 11274-87, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143608

RESUMEN

Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits.


Asunto(s)
Encéfalo/citología , Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/ultraestructura , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Bloqueadores de los Canales de Sodio/farmacología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura
9.
J Neurochem ; 128(2): 267-79, 2014 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-24117969

RESUMEN

EphrinA/EphA-dependent axon repulsion is crucial for synaptic targeting in developing neurons but downstream molecular mechanisms remain obscure. Here, it is shown that ephrinA5/EphA3 triggers proteolysis of the neural cell adhesion molecule (NCAM) by the metalloprotease a disintegrin and metalloprotease (ADAM)10 to promote growth cone collapse in neurons from mouse neocortex. EphrinA5 induced ADAM10 activity to promote ectodomain shedding of polysialic acid-NCAM in cortical neuron cultures, releasing a ~ 250 kDa soluble fragment consisting of most of its extracellular region. NCAM shedding was dependent on ADAM10 and EphA3 kinase activity as shown in HEK293T cells transfected with dominant negative ADAM10 and kinase-inactive EphA3 (K653R) mutants. Purified ADAM10 cleaved NCAM at a sequence within the E-F loop of the second fibronectin type III domain (Leu(671) -Lys(672) /Ser(673) -Leu(674) ) identified by mass spectrometry. Mutations of NCAM within the ADAM10 cleavage sequence prevented EphA3-induced shedding of NCAM in HEK293T cells. EphrinA5-induced growth cone collapse was dependent on ADAM10 activity, was inhibited in cortical cultures from NCAM null mice, and was rescued by WT but not ADAM10 cleavage site mutants of NCAM. Regulated proteolysis of NCAM through the ephrin5/EphA3/ADAM10 mechanism likely impacts synapse development, and may lead to excess NCAM shedding when disrupted, as implicated in neurodevelopmental disorders such as schizophrenia. PSA-NCAM and ephrinA/EphA3 coordinately regulate inhibitory synapse development. Here, we have found that ephrinA5 stimulates EphA3 kinase and ADAM10 activity to promote PSA-NCAM cleavage at a site in its second FNIII repeat, which regulates ephrinA5-induced growth cone collapse in GABAergic and non-GABAergic neurons. These findings identify a new regulatory mechanism which may contribute to inhibitory connectivity.


Asunto(s)
Proteínas ADAM/metabolismo , Secretasas de la Proteína Precursora del Amiloide/metabolismo , Conos de Crecimiento/fisiología , Proteínas de la Membrana/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Receptor EphA3/metabolismo , Receptor EphA5/metabolismo , Proteína ADAM10 , Animales , Células Cultivadas , Corteza Cerebral/citología , Fibronectinas/metabolismo , Conos de Crecimiento/ultraestructura , Células HEK293 , Humanos , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Mutación , Moléculas de Adhesión de Célula Nerviosa/genética , Estructura Terciaria de Proteína
10.
Cereb Cortex ; 23(1): 162-77, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275477

RESUMEN

A novel function for the neural cell adhesion molecule (NCAM) was identified in ephrinA/EphA-mediated repulsion as an important regulatory mechanism for development of GABAergic inhibitory synaptic connections in mouse prefrontal cortex. Deletion of NCAM, EphA3, or ephrinA2/3/5 in null mutant mice increased the numbers and size of perisomatic synapses between GABAergic basket interneurons and pyramidal cells in the developing cingulate cortex (layers II/III). A functional consequence of NCAM loss was increased amplitudes and faster kinetics of miniature inhibitory postsynaptic currents in NCAM null cingulate cortex. NCAM and EphA3 formed a molecular complex and colocalized with the inhibitory presynaptic marker vesicular GABA transporter (VGAT) in perisomatic puncta and neuropil in the cingulate cortex. EphrinA5 treatment promoted axon remodeling of enhanced green fluorescent protein-labeled basket interneurons in cortical slice cultures and induced growth cone collapse in wild-type but not NCAM null mutant neurons. NCAM modified with polysialic acid (PSA) was required to promote ephrinA5-induced axon remodeling of basket interneurons in cortical slices, likely by providing a permissive environment for ephrinA5/EphA3 signaling. These results reveal a new mechanism in which NCAM and ephrinAs/EphA3 coordinate to constrain GABAergic interneuronal arborization and perisomatic innervation, potentially contributing to excitatory/inhibitory balance in prefrontal cortical circuitry.


Asunto(s)
Efrinas/metabolismo , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
11.
Mol Cell Neurosci ; 50(2): 201-10, 2012 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-22579729

RESUMEN

Interaction of the cell adhesion molecule L1 with the cytoskeletal adaptor ankyrin is essential for topographic mapping of retinal ganglion cell (RGC) axons to synaptic targets in the superior colliculus (SC). Mice mutated in the L1 ankyrin-binding motif (FIGQY(1229)H) display abnormal mapping of RGC axons along the mediolateral axis of the SC, resembling mouse mutant phenotypes in EphB receptor tyrosine kinases. To investigate whether L1 functionally interacts with EphBs, we investigated the role of EphB kinases in phosphorylating L1 using a phospho-specific antibody to the tyrosine phosphorylated FIGQY(1229) motif. EphB2, but not an EphB2 kinase dead mutant, induced tyrosine phosphorylation of L1 at FIGQY(1229) and perturbed ankyrin recruitment to the membrane in L1-transfected HEK293 cells. Src family kinases mediated L1 phosphorylation at FIGQY(1229) by EphB2. Other EphB receptors that regulate medial-lateral retinocollicular mapping, EphB1 and EphB3, also mediated phosphorylation of L1 at FIGQY(1229). Tyrosine(1176) in the cytoplasmic domain of L1, which regulates AP2/clathrin-mediated endocytosis and axonal trafficking, was not phosphorylated by EphB2. Accordingly mutation of Tyr(1176) to Ala in L1-Y(1176)A knock-in mice resulted in normal retinocollicular mapping of ventral RGC axons. Immunostaining of the mouse SC during retinotopic mapping showed that L1 colocalized with phospho-FIGQY in RGC axons in retinorecipient layers. Immunoblotting of SC lysates confirmed that L1 was phosphorylated at FIGQY(1229) in wild type but not L1-FIGQY(1229)H (L1Y(1229)H) mutant SC, and that L1 phosphorylation was decreased in the EphB2/B3 mutant SC. Inhibition of ankyrin binding in L1Y(1229)H mutant RGCs resulted in increased neurite outgrowth compared to WT RGCs in retinal explant cultures, suggesting that L1-ankyrin binding serves to constrain RGC axon growth. These findings are consistent with a model in which EphB kinases phosphorylate L1 at FIGQY(1229) in retinal axons to modulate L1-ankyrin binding important for mediolateral retinocollicular topography.


Asunto(s)
Mapeo Encefálico , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Receptor EphB2/metabolismo , Células Ganglionares de la Retina/fisiología , Colículos Superiores/fisiología , Animales , Ancirinas/metabolismo , Células Cultivadas , Células HEK293 , Humanos , Ratones , Ratones Mutantes , Mutación , Molécula L1 de Adhesión de Célula Nerviosa/química , Molécula L1 de Adhesión de Célula Nerviosa/genética , Fosforilación , Dominios y Motivos de Interacción de Proteínas , Receptor EphB2/genética , Receptores de la Familia Eph/metabolismo , Células Ganglionares de la Retina/metabolismo , Tirosina/genética
12.
Neuroscience ; 508: 98-109, 2023 01 01.
Artículo en Inglés | MEDLINE | ID: mdl-36064052

RESUMEN

The L1 cell adhesion molecule NrCAM (Neuron-glia related cell adhesion molecule) functions as a co-receptor for secreted class 3 Semaphorins to prune subpopulations of dendritic spines on apical dendrites of pyramidal neurons in the developing mouse neocortex. The developing spine cytoskeleton is enriched in actin filaments, but a small number of microtubules have been shown to enter the spine apparently trafficking vesicles to the membrane. Doublecortin-like kinase 1 (DCLK1) is a member of the Doublecortin (DCX) family of microtubule-binding proteins with serine/threonine kinase activity. To determine if DCLK1 plays a role in spine remodeling, we generated a tamoxifen-inducible mouse line (Nex1Cre-ERT2: DCLK1flox/flox: RCE) to delete microtubule binding isoforms of DCLK1 from pyramidal neurons during postnatal stages of spine development. Homozygous DCLK1 conditional mutant mice exhibited decreased spine density on apical dendrites of pyramidal neurons in the prefrontal cortex (layer 2/3). Mature mushroom spines were selectively decreased upon DCLK1 deletion but dendritic arborization was unaltered. Mutagenesis and binding studies revealed that DCLK1 bound NrCAM at the conserved FIGQY1231 motif in the NrCAM cytoplasmic domain, a known interaction site for the actin-spectrin adaptor Ankyrin. These findings demonstrate in a novel mouse model that DCLK1 facilitates spine growth and maturation on cortical pyramidal neurons in the mouse prefrontal cortex.


Asunto(s)
Espinas Dendríticas , Quinasas Similares a Doblecortina , Ratones , Animales , Espinas Dendríticas/metabolismo , Células Piramidales/fisiología , Dendritas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Corteza Prefrontal/metabolismo
13.
bioRxiv ; 2023 Aug 10.
Artículo en Inglés | MEDLINE | ID: mdl-37503187

RESUMEN

Postnatal regulation of dendritic spine formation and refinement in cortical pyramidal neurons is critical for excitatory/inhibitory balance in neocortical networks. Recent studies have identified a selective spine pruning mechanism in the mouse prefrontal cortex (PFC) mediated by class 3 Semaphorins and the L1-CAM cell adhesion molecules Neuron-glia related CAM (NrCAM), Close Homolog of L1 (CHL1), and L1. L1-CAMs bind Ankyrin B (AnkB), an actin-spectrin adaptor encoded by Ankyrin2 ( ANK2 ), a high confidence gene for autism spectrum disorder (ASD). In a new inducible mouse model (Nex1Cre-ERT2: Ank2 flox : RCE), Ank2 deletion in early postnatal pyramidal neurons increased spine density on apical dendrites in PFC layer 2/3 of homozygous and heterozygous Ank2 -deficient mice. In contrast, Ank2 deletion in adulthood had no effect on spine density. Sema3F-induced spine pruning was impaired in cortical neuron cultures from AnkB-null mice and was rescued by re-expression of the 220 kDa AnkB isoform but not 440 kDa AnkB. AnkB bound to NrCAM at a cytoplasmic domain motif (FIGQY 1231 ), and mutation to FIGQH inhibited binding, impairing Sema3F-induced spine pruning in neuronal cultures. Identification of a novel function for AnkB in dendritic spine regulation provides insight into cortical circuit development, as well as potential molecular deficiencies in ASD.

14.
Front Neuroanat ; 17: 1111525, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007644

RESUMEN

A novel function for the L1 cell adhesion molecule, which binds the actin adaptor protein Ankyrin was identified in constraining dendritic spine density on pyramidal neurons in the mouse neocortex. In an L1-null mouse mutant increased spine density was observed on apical but not basal dendrites of pyramidal neurons in diverse cortical areas (prefrontal cortex layer 2/3, motor cortex layer 5, visual cortex layer 4. The Ankyrin binding motif (FIGQY) in the L1 cytoplasmic domain was critical for spine regulation, as demonstrated by increased spine density and altered spine morphology in the prefrontal cortex of a mouse knock-in mutant (L1YH) harboring a tyrosine (Y) to histidine (H) mutation in the FIGQY motif, which disrupted L1-Ankyrin association. This mutation is a known variant in the human L1 syndrome of intellectual disability. L1 was localized by immunofluorescence staining to spine heads and dendrites of cortical pyramidal neurons. L1 coimmunoprecipitated with Ankyrin B (220 kDa isoform) from lysates of wild type but not L1YH forebrain. This study provides insight into the molecular mechanism of spine regulation and underscores the potential for this adhesion molecule to regulate cognitive and other L1-related functions that are abnormal in the L1 syndrome.

15.
J Neurosci ; 31(4): 1545-58, 2011 Jan 26.
Artículo en Inglés | MEDLINE | ID: mdl-21273439

RESUMEN

NrCAM is a neural cell adhesion molecule of the L1 family that has been linked to autism spectrum disorders, a disease spectrum in which abnormal thalamocortical connectivity may contribute to visual processing defects. Here we show that NrCAM interaction with neuropilin-2 (Npn-2) is critical for semaphorin 3F (Sema3F)-induced guidance of thalamocortical axon subpopulations at the ventral telencephalon (VTe), an intermediate target for thalamic axon sorting. Genetic deletion of NrCAM or Npn-2 caused contingents of embryonic thalamic axons to misproject caudally in the VTe. The resultant thalamocortical map of NrCAM-null mutants showed striking mistargeting of motor and somatosensory thalamic axon contingents to the primary visual cortex, but retinogeniculate targeting and segregation were normal. NrCAM formed a molecular complex with Npn-2 in brain and neural cells, and was required for Sema3F-induced growth cone collapse in thalamic neuron cultures, consistent with a vital function for NrCAM in Sema3F-induced axon repulsion. NrCAM-null mice displayed reduced responses to visual evoked potentials recorded from layer IV in the binocular zone of primary visual cortex (V1), particularly when evoked from the ipsilateral eye, indicating abnormal visual acuity and ocularity. These results demonstrate that NrCAM is required for normal maturation of cortical visual acuity, and suggest that the aberrant projection of thalamic motor and somatosensory axons to the visual cortex in NrCAM-null mutant mice impairs cortical functions.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/fisiología , Corteza Motora/ultraestructura , Corteza Somatosensorial/ultraestructura , Tálamo/ultraestructura , Agudeza Visual , Corteza Visual/ultraestructura , Animales , Moléculas de Adhesión Celular/genética , Potenciales Evocados Visuales , Femenino , Conos de Crecimiento/fisiología , Masculino , Proteínas de la Membrana/fisiología , Ratones , Ratones Noqueados , Corteza Motora/embriología , Corteza Motora/crecimiento & desarrollo , Proteínas del Tejido Nervioso/fisiología , Neuropilina-2/genética , Neuropilina-2/fisiología , Corteza Somatosensorial/embriología , Corteza Somatosensorial/crecimiento & desarrollo , Tálamo/embriología , Tálamo/crecimiento & desarrollo , Corteza Visual/embriología , Corteza Visual/crecimiento & desarrollo
16.
Cereb Cortex ; 21(2): 401-12, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-20576928

RESUMEN

Neural cell adhesion molecule close homolog of L1 (CHL1) is a regulator of topographic targeting of thalamic axons to the somatosensory cortex (S1) but little is known about its cooperation with other L1 class molecules. To investigate this, CHL1(-/-)/L1(-/y) double mutant mice were generated and analyzed for thalamocortical axon topography. Double mutants exhibited a striking posterior shift of axons from motor thalamic nuclei to the visual cortex (V1), which was not observed in single mutants. In wild-type (WT) embryos, L1 and CHL1 were coexpressed in the dorsal thalamus (DT) and on fibers along the thalamocortical projection in the ventral telencephalon and cortex. L1 and CHL1 colocalized on growth cones and neurites of cortical and thalamic neurons in culture. Growth cone collapse assays with WT and mutant neurons demonstrated a requirement for L1 and CHL1 in repellent responses to EphrinA5, a guidance factor for thalamic axons. L1 coimmunoprecipitated with the principal EphrinA5 receptors expressed in the DT (EphA3, EphA4, and EphA7), whereas CHL1 associated selectively with EphA7. These results implicate a novel mechanism in which L1 and CHL1 interact with individual EphA receptors and cooperate to guide subpopulations of thalamic axons to distinct neocortical areas essential for thalamocortical connectivity.


Asunto(s)
Axones/fisiología , Moléculas de Adhesión Celular/metabolismo , Corteza Cerebral/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/metabolismo , Vías Nerviosas/fisiología , Tálamo/metabolismo , Aminoácidos/metabolismo , Animales , Axones/efectos de los fármacos , Axones/ultraestructura , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Corteza Cerebral/citología , Embrión de Mamíferos , Efrina-A5/farmacología , Regulación de la Expresión Génica/efectos de los fármacos , Regulación de la Expresión Génica/genética , Conos de Crecimiento/fisiología , Humanos , Inmunoprecipitación/métodos , Proteínas Luminiscentes/genética , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Molécula L1 de Adhesión de Célula Nerviosa/deficiencia , Neuronas/citología , Neuronas/efectos de los fármacos , Neuronas/fisiología , Receptores de la Familia Eph/genética , Receptores de la Familia Eph/metabolismo , Tálamo/citología , Transfección/métodos
17.
Neurobiol Dis ; 43(2): 372-8, 2011 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-21515372

RESUMEN

The neural cell adhesion molecule, NCAM, is a pivotal regulator of neural development, with key roles in axonal and dendritic growth and synaptic plasticity. Alterations in NCAM expression or proteolytic cleavage have been linked to human neuropsychiatric disorders such as schizophrenia, bipolar disorder and Alzheimer's disease, and may contribute to cognitive dysfunction. We have generated mice overexpressing the NCAM extracellular (EC) proteolytic cleavage fragment which has been reported to be increased in schizophrenic versus normal brains. These mice show impaired GABAergic innervation and reduced number of apical dendritic spines on pyramidal neurons in the prefrontal cortex (PFC). Here, these NCAM-EC transgenic mice were subjected to behavioral tasks and electrophysiological measurements to determine the impact of structural abnormalities in the PFC on synaptic and cognitive functions. NCAM-EC mice exhibited impaired working memory in a delayed non-match-to-sample task, which requires PFC function, but showed no differences in anxiety, olfactory abilities, or sociability. Transgenic mice displayed impaired long- and short-term potentiation in the PFC but normal synaptic plasticity in the hippocampus, suggesting that the abnormal synaptic innervation in NCAM-EC mice impairs PFC plasticity and alters working memory. These findings may have implications for cognitive dysfunctions observed in neuropsychiatric disorders.


Asunto(s)
Corteza Cerebral/patología , Memoria a Corto Plazo/fisiología , Moléculas de Adhesión de Célula Nerviosa/genética , Plasticidad Neuronal/genética , Neuronas/patología , Animales , Corteza Cerebral/fisiología , Modelos Animales de Enfermedad , Espacio Extracelular/genética , Espacio Extracelular/metabolismo , Femenino , Masculino , Trastornos de la Memoria/genética , Trastornos de la Memoria/metabolismo , Trastornos de la Memoria/patología , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Moléculas de Adhesión de Célula Nerviosa/biosíntesis , Neuronas/metabolismo , Técnicas de Cultivo de Órganos , Estructura Terciaria de Proteína/genética , Proteolisis
18.
Cereb Cortex ; 20(11): 2684-93, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20156840

RESUMEN

The L1 adhesion molecule functions in axon growth and guidance, but a role in synaptic development of cortical inhibitory interneurons is largely unexplored. L1 mediates adhesion by engaging the actin cytoskeleton through binding the actin/spectrin adapter protein ankyrin. Loss of L1-ankyrin interaction impaired process elaboration/branching by GABAergic interneurons, including basket cells, and reduced the number of perisomatic synapses in the cingulate cortex as shown in L1 mutant mice (L1YH) with a mutation in the ankyrin-binding site, either alone or intercrossed with GAD67-enhanced green fluorescence protein reporter mice. Electron microscopy revealed that perisomatic inhibitory synapses but not excitatory synapses in the neuropil were specifically affected. In wild-type cingulate cortex, L1 colocalized with perisomatic synaptic markers, whereas L1 phosphorylation on Tyr(1229) decreased postnatally, correlating with increased ankyrin binding and synaptic development. These results suggest a novel role for L1 engagement with the actin cytoskeleton in development of inhibitory connectivity within the cingulate cortex.


Asunto(s)
Ancirinas/fisiología , Interneuronas/metabolismo , Molécula L1 de Adhesión de Célula Nerviosa/fisiología , Corteza Prefrontal/fisiología , Terminales Presinápticos/fisiología , Ácido gamma-Aminobutírico/fisiología , Citoesqueleto de Actina/genética , Citoesqueleto de Actina/metabolismo , Animales , Técnicas de Sustitución del Gen , Giro del Cíngulo/metabolismo , Giro del Cíngulo/fisiología , Interneuronas/citología , Masculino , Ratones , Ratones Mutantes Neurológicos , Ratones Transgénicos , Neocórtex/citología , Neocórtex/fisiología , Molécula L1 de Adhesión de Célula Nerviosa/genética , Inhibición Neural/genética , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Unión Proteica/genética , Sinapsis/genética
19.
Nat Neurosci ; 10(1): 19-26, 2007 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-17189949

RESUMEN

Recognition molecules of the immunoglobulin superfamily have important roles in neuronal interactions during ontogeny, including migration, survival, axon guidance and synaptic targeting. Their downstream signal transduction events specify whether a cell changes its place of residence or projects axons and dendrites to targets in the brain, allowing the construction of a dynamic neural network. A wealth of recent discoveries shows that cell adhesion molecules interact with attractant and repellent guidance receptors to control growth cone and cell motility in a coordinate fashion. We focus on the best-studied subclasses, the neural cell adhesion molecule NCAM and the L1 family of adhesion molecules, which share important structural and functional features. We have chosen these paradigmatic molecules and their interactions with other recognition molecules as instructive for elucidating the mechanisms by which other recognition molecules may guide cell interactions during development or modify their function as a result of injury, learning and memory.


Asunto(s)
Axones/fisiología , Movimiento Celular/fisiología , Inmunoglobulinas/metabolismo , Neuronas/fisiología , Transducción de Señal/fisiología , Animales , Diferenciación Celular/fisiología , Inmunoglobulinas/clasificación , Moléculas de Adhesión de Célula Nerviosa/metabolismo
20.
Front Cell Dev Biol ; 9: 625340, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33585481

RESUMEN

Mammalian brain circuits are wired by dynamic formation and remodeling during development to produce a balance of excitatory and inhibitory synapses. Synaptic regulation is mediated by a complex network of proteins including immunoglobulin (Ig)- class cell adhesion molecules (CAMs), structural and signal-transducing components at the pre- and post-synaptic membranes, and the extracellular protein matrix. This review explores the current understanding of developmental synapse regulation mediated by L1 and NCAM family CAMs. Excitatory and inhibitory synapses undergo formation and remodeling through neuronal CAMs and receptor-ligand interactions. These responses result in pruning inactive dendritic spines and perisomatic contacts, or synaptic strengthening during critical periods of plasticity. Ankyrins engage neural adhesion molecules of the L1 family (L1-CAMs) to promote synaptic stability. Chondroitin sulfates, hyaluronic acid, tenascin-R, and linker proteins comprising the perineuronal net interact with L1-CAMs and NCAM, stabilizing synaptic contacts and limiting plasticity as critical periods close. Understanding neuronal adhesion signaling and synaptic targeting provides insight into normal development as well as synaptic connectivity disorders including autism, schizophrenia, and intellectual disability.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA