Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Ultramicroscopy ; 109(5): 649-53, 2009 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-19026490

RESUMEN

The redistribution of boron in highly implanted 100 silicon (10keV; 5x10(15)at/cm(2)) annealed at 600 degrees C for 1h was studied using both laser-assisted wide-angle atom probe (LaWaTAP) and secondary ion mass spectrometry (SIMS). As expected, the concentration was found to increase steeply to 10(21) boron atoms/cm(3) at a distance close to 35nm and to decrease slowly to 10(19)/cm(3), a value close to the boron level of the silicon substrate. For depth under 75nm, the implantation profile of boron as given by LaWaTAP was found very close to that given by SIMS investigations without any calibration of the LaWaTAP data. For larger depth, the LaWaTAP profile is observed above that of SIMS. Detection limits of LaWaTAP for low dopant concentrations are discussed. The contribution of the background noise in the spectrum and sampling errors are considered. Fine-scale fluctuations not detected in SIMS profile and related to clustering were evidenced in LaWaTAP maps and profiles. Numerous boron clusters lying on {001} planes parallel to the implanted surface, a few nanometer in size, were identified and interpreted as boron interstitial clusters (BICs), in agreement with Cristiano et al. observations. They contained between 50 and 300 atoms (Si and B). This is much higher than that generally assumed in particular in ab-initio modelling where a few atoms BICs are considered. These clusters contained 7at% of boron in average.

2.
Ultramicroscopy ; 109(7): 797-801, 2009 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-19339118

RESUMEN

The NiSi silicide that forms by reactive diffusion between Ni and Si active regions of nanotransistors is used nowadays as contacts in nanoelectronics because of its low resistivity. Pt is added to the Ni film in order to stabilise the NiSi phase against the formation of the high-resistivity NiSi(2) phase and agglomeration. In situ X-ray diffraction (XRD) experiments performed on material aged at 350 degrees C (under vacuum) showed the complete consumption of the Ni (5 at% Pt) phase, the regression of Ni(2)Si phase as well as the growth of the NiSi phase after 48 min. Pt distribution for this heat treatment has been analysed by laser-assisted tomographic atom probe (LATAP). An enrichment of platinum in the middle of the NiSi phase suggests that Pt is almost immobile during the growth of NiSi at the two interfaces: Ni(2)Si/NiSi and NiSi/Si. In the peak, platinum was found to substitute for Ni in the NiSi phase. Very small amounts of Pt were also found in the Ni(2)Si phase close to the surface and at the NiSi/Si interface.

3.
Ultramicroscopy ; 206: 112807, 2019 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-31301607

RESUMEN

Correlative analysis is a powerful way to relate crystallographic and chemical information to the properties of materials. In this work, a procedure is proposed to select and analyze interfaces of polycrystalline thin film materials through correlative transmission Kikuchi diffraction/energy dispersive X-ray spectroscopy (TKD/EDS), transmission electron microscopy (TEM) and atom probe tomography (APT). TKD provides information on the crystallographic orientation. The EDS analysis performed together with TKD in the scanning electron microscope (SEM) makes chemical information available allowing phases of similar crystal structure, but with a different composition to be distinguished. The information of TKD/EDS can be correlated to successive TEM and APT analysis on selected interfaces for structural and chemical analysis at the atomic scale. An interface of an epitaxial orientated grain of a polycrystalline CoSi2 thin film on (111)Si is selected and analyzed. The selected interface has a twin character and shows facets of different orientation and area. Site-specific segregation of Ge to junctions of the facets is evidenced. The correlation between local strain from misfit (defects) at the interface and segregation is discussed.

4.
Ultramicroscopy ; 132: 193-8, 2013 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-23522972

RESUMEN

The effect on Fe-Cr phase separation of a uniaxial stress during thermal ageing at 425 °C is investigated on a Fe-15Cr-5Ni steel, a model alloy of commercial 15-5 PH steel. The applied stress is shown to accelerate the ageing kinetics, and influence the morphology of Cr rich domains. A dependence of the phase separation decomposition kinetics on the relative orientations of the load and the crystal local orientation has also been observed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA