Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
Asunto de la revista
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 62(7): 3106-3115, 2023 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-36753476

RESUMEN

Facile access to site-selective hetero-lanthanide molecules will open new avenues in the search of novel photophysical phenomena based on Ln-to-Ln' energy transfer (ET). This challenge demands strategies to segregate efficiently different Ln metal ions among different positions in a molecule. We report here the one-step synthesis and structure of a pure [YbNdYb] (1) coordination complex featuring short Yb···Nd distances, ideal to investigate a potential distributive (i.e., from one donor to two acceptors) intramolecular ET from one Nd3+ ion to two Yb3+ centers within a well-characterized molecule. The difference in ionic radius is the mechanism allowing to allocate selectively both types of metal ion within the molecular structure, exploited with the simultaneous use of two ß-diketone-type ligands. To assist the photophysical investigation of this heterometallic species, the analogues [YbLaYb] (2) and [LuNdLu] (3) have also been prepared. Sensitization of Yb3+ and Nd3+ in the last two complexes, respectively, was observed, with remarkably long decay times, facilitating the determination of the Nd-to-Yb ET within the [YbNdYb] composite. This ET was demonstrated by comparing the emission of iso-absorbant solutions of 1, 2, and 3 and through lifetime determinations in solution and solid state. The comparatively high efficiency of this process corroborates the facilitating effect of having two acceptors for the nonradiative decay of Nd3+ created within the [YbNdYb] molecule.

2.
Molecules ; 25(14)2020 Jul 10.
Artículo en Inglés | MEDLINE | ID: mdl-32664199

RESUMEN

A family of four Ln(III) complexes has been synthesized with the general formula [Ln2(NO3)4(L)2(S)] (Ln = Gd, Tb, Er, and S = H2O; 1, 2 and 4, respectively/Ln = Dy, S = MeOH, complex 3), where HL is the flexible ditopic ligand N'-(1-(pyridin-2-yl)ethylidene)pyridine-2-carbohydrazide. The structures of isostructural MeOH/H2O solvates of these complexes were determined by single-crystal X-ray diffraction. The two LnIII ions are doubly bridged by the deprotonated oxygen atoms of two "head-to-head" 2.21011 (Harris notation) L¯ ligands, forming a central, nearly rhombic {LnIII2(µ-OR)2}4+ core. Two bidentate chelating nitrato groups complete a sphenocoronal 10-coordination at one metal ion, while two bidentate chelating nitrato groups and one solvent molecule (H2O or MeOH) complete a spherical capped square antiprismatic 9-coordination at the other. The structures are critically compared with those of other, previously reported metal complexes of HL or L¯. The IR spectra of 1-4 are discussed in terms of the coordination modes of the organic and inorganic ligands involved. The f-f transitions in the solid-state (diffuse reflectance) spectra of the Tb(III), Dy(III), and Er(III) complexes have been fully assigned in the UV/Vis and near-IR regions. Magnetic susceptibility studies in the 1.85-300 K range reveal the presence of weak, intramolecular GdIII∙∙∙GdIII antiferromagnetic exchange interactions in 1 [J/kB = -0.020(6) K based on the spin Hamiltonian H = -2J(SGd1∙ SGd2)] and probably weak antiferromagnetic LnIII∙∙∙LnIII exchange interactions in 2-4. Ac susceptibility measurements in zero dc field do not show frequency dependent out-of-phase signals, and this experimental fact is discussed for 3 in terms of the magnetic anisotropy axis for each DyIII center and the oblate electron density of this metal ion. Complexes 3 and 4 are Single-Molecule Magnets (SMMs) and this behavior is optimally observed under external dc fields of 600 and 1000 Oe, respectively. The magnetization relaxation pathways are discussed and a satisfactory fit of the temperature and field dependencies of the relaxation time τ was achieved considering a model that employs Raman, direct, and Orbach relaxation mechanisms.


Asunto(s)
Complejos de Coordinación/química , Elementos de la Serie de los Lantanoides/química , Piridinas/química , Cristalografía por Rayos X/métodos , Ligandos , Fenómenos Magnéticos , Magnetismo/métodos , Estructura Molecular , Compuestos Organometálicos/química , Oxígeno/química , Solventes/química
3.
Dalton Trans ; 52(24): 8332-8343, 2023 Jun 20.
Artículo en Inglés | MEDLINE | ID: mdl-37259668

RESUMEN

The initial use of a tetradentate Schiff base (LH2) derived from the 2 : 1 condensation between 2-hydroxyacetophenone and cyclohexane-1,2-diamine in 4f-metal chemistry is described. The 1 : 2 reaction of Ln(NO3)3·xH2O (Ln = lanthanoid or yttrium) and LH2 in MeOH/CH2Cl2 has provided access to isostructural complexes [Ln(NO3)3(L'H2)(MeOH)] in moderate to good yields. Surprisingly, the products contain the corresponding Schiff base ligand L'H2 possessing six aliphatic -CH2- groups instead of the -CH-(CH2)4-CH- unit of the cyclohexane ring, i.e. an unusual ring-opening of the latter has occurred. A mechanism for this LnIII-assisted/promoted LH2 → L'H2 transformation has been proposed assuming transient LnII species and a second LH2 molecule as the H2 source for the reduction of the cyclohexane moiety. DFT calculations provide strong evidence for the great thermodynamic stability of the products in comparison with analogous complexes containing the original intact ligand. The structures of the PrIII, SmIII, GdIII, TbIII, and HoIII complexes have been determined by single-crystal X-ray crystallography. The 9-coordinate LnIII centre in the molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the bidentate chelating organic ligand, and one oxygen atom from the coordinated MeOH group. In the overall neutral bis(zwitterionic) L'H2 ligand, the acidic H atoms are clearly located on the imino nitrogen atoms and this results in the formation of an unusual 16-membered chelating ring. The coordination polyhedra defined by the nine donor atoms around the 4f-metal-ion centres can be best described as distorted, spherical capped square antiprisms. The EuIII, TbIII, and DyIII complexes exhibit LnIII-based luminescence in the visible region, with the coordinated L'H2 molecule acting as the antenna. Ac magnetometry experiments show that the DyIII member of the family behaves as an SIM at zero field and under external dc fields of 0.1 and 0.2 T without the enhancement of the peaks' maxima, suggesting that QTM is not the relaxation path. The GdIII complex behaves, rather unexpectedly, as a SIM with two different magnetic relaxation paths occurring at very close temperatures; this behaviour is tentatively attributed to a very small axial zero-field splitting (D ∼ 0.1 cm-1), which cannot be detected by magnetization or susceptibility experiments. The prospects of the present, first results in the lanthanoid(III)-LH2 chemistry are discussed.

4.
Chem Sci ; 13(19): 5574-5581, 2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35694338

RESUMEN

Heterometallic lanthanide [LnLn'] coordination complexes that are accessible thermodynamically are very scarce because the metals of this series have very similar chemical behaviour. Trinuclear systems of this category have not been reported. A coordination chemistry scaffold has been shown to produce molecules of type [LnLn'Ln] of high purity, i.e. exhibiting high metal distribution ability, based on their differences in ionic radius. Through a detailed analysis of density functional theory (DFT) based calculations, we discern the energy contributions that lead to the unparalleled chemical selectivity of this molecular system. Some of the previously reported examples are compared here with the newly prepared member of this exotic list, [Er2Pr(LA)2(LB)2(py)(H2O)2](NO3) (1) (H2LA and H2LB are two ß-diketone ligands). A magnetic analysis extracted from magnetization and calorimetry determinations identifies the necessary attributes for it to act as an addressable, conditional multiqubit spin-based quantum gate. Complementary ab initio calculations confirm the feasibility of these complexes as composite quantum gates, since they present well-isolated ground states with highly anisotropic and distinct g-tensors. The electronic structure of 1 has also been analyzed by EPR. Pulsed experiments have allowed the establishment of the quantum coherence of the transitions within the relevant spin states, as well as the feasibility of a coherent control of these states via nutation experiments.

5.
Front Chem ; 6: 461, 2018.
Artículo en Inglés | MEDLINE | ID: mdl-30356793

RESUMEN

The area of 3d-metal coordination clusters that behave as Single-Molecule Magnets (SMMs) is now quite mature within the interdisciplinary field of Molecular Magnetism. This area has created a renaissance in Inorganic Chemistry. From the synthetic Inorganic Chemistry viewpoint, the early years of "try and see" exercises (1993-2000) have been followed by the development of strategies and strict approaches. Our review will first summarize the early synthetic efforts and routes for the preparation of polynuclear 3d-metal SMMs, and it will be then concentrated on the description of the existing strategies. The former involve the combination of appropriate 3d-metal-containing starting materials (simple salts with inorganic anions, metal cardoxylates, and pre-formed carboxylate clusters, metal phosphonates) and one or two primary organic ligands; the importance of the end-on azido group as a ferromagnetic coupler in 3d-metal SMM chemistry will be discussed. The utility of comproportionation reactions and the reductive aggregation route for the construction of manganese SMMs will also be described. Most of the existing strategies for the synthesis of SMMs concern manganese. These involve substitution of carboxylate ligands in pre-formed SMMs by other carboxylate or non-carboxylate groups, reduction procedures for the { Mn 8 III Mn 4 IV } SMMs, spin "tweaking," "switching on" SMM properties upon conversion of low-spin clusters into high-spin ones, ground-state spin switching and enhancing SMM properties via targeted structural distortions, the use of radical bridging ligands and supramolecular approaches. A very useful strategy is also the "switching on" of SMM behavior through replacement of bridging hydroxide groups by end-on azido or isocyanato ligands in clusters. Selected examples will be mentioned and critically discussed. Particular emphasis will be given on the criteria for the choice of ligands.

6.
Dalton Trans ; 47(34): 11859-11872, 2018 Aug 29.
Artículo en Inglés | MEDLINE | ID: mdl-29785431

RESUMEN

The initial use of anils, i.e. bidentate Schiff bases derived from the condensation of anilines with salicylaldehyde or its derivatives, in 4f-metal chemistry is described. The 1 : 1 reactions between Ln(NO3)3·xH2O (Ln = lanthanide) or Y(NO3)3·6H2O and N-(5-bromosalicylidene)aniline (5BrsalanH) in MeCN has provided access to complexes [Ln(NO3)3(5BrsalanH)2(H2O)]·MeCN (Ln = Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Yb) and [Y(NO3)3(5BrsalanH)2(H2O)]·MeCN, respectively, in good yields. The structures of the isomorphous complexes with Ln = Pr(1·MeCN), Sm(3·MeCN), Gd(5·MeCN), Dy(7·MeCN) and Er(9·MeCN) have been determined by single-crystal X-ray crystallography. The other complexes were proven to be isostructural with the fully structurally characterized compounds based on elemental analyses, IR spectra, unit cell determinations and powder X-ray patterns. The 9-coordinate LnIII centre in the [Ln(NO3)3(5BrsalanH)2(H2O)] molecules is bound to six oxygen atoms from the three bidentate chelating nitrato groups, two oxygen atoms that belong to the organic ligands and one oxygen atom from the aquo ligand. The 5BrsalanH molecules behave as monodentate O-donors; the acidic H atom is clearly located on the imino N atom and thus the formally neutral ligands adopt an extremely rare coordination mode participating in the zwitterionic form. The coordination polyhedra defined by the nine donor atoms around the LnIII centres are best described as spherical capped square antiprisms. Various intermolecular interactions build the crystal structures and Hirshfeld surface analysis was applied to evaluate the magnitude of interactions between the molecules. Solid-state IR and UV/VIS data are discussed in terms of structural features. 1H NMR data prove that the diamagnetic [Y(NO3)3(5BrsalanH)2(H2O)] complex decomposes in DMSO. Combined dc and ac magnetic susceptibility, as well as magnetization data for 7 suggest that this complex shows field-induced slow magnetic relaxation. Two magnetization relaxation processes are evident. The fit to the Arrhenius law has been performed using the 6.5-8.5 K ac data, affording an effective barrier for the magnetization reversal of 27 cm-1. Cole-Cole plot analysis in the temperature range in which the Orbach relaxation process is assumed, reveals a narrow distribution of relaxation times. The solid Dy(iii) complex 7 emits green light at 338 nm, the emission being ligand-centered. The perspectives of the present, first results in the lanthanide(iii)-anil chemistry are critically discussed.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA