Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
1.
Cereb Cortex ; 30(8): 4689-4707, 2020 06 30.
Artículo en Inglés | MEDLINE | ID: mdl-32249896

RESUMEN

Parvalbumin (PV)-expressing basket interneurons in the prefrontal cortex (PFC) regulate pyramidal cell firing, synchrony, and network oscillations. Yet, it is unclear how their perisomatic inputs to pyramidal neurons are integrated into neural circuitry and adjusted postnatally. Neural cell adhesion molecule NCAM is expressed in a variety of cells in the PFC and cooperates with EphrinA/EphAs to regulate inhibitory synapse density. Here, analysis of a novel parvalbumin (PV)-Cre: NCAM F/F mouse mutant revealed that NCAM functions presynaptically in PV+ basket interneurons to regulate postnatal elimination of perisomatic synapses. Mutant mice exhibited an increased density of PV+ perisomatic puncta in PFC layer 2/3, while live imaging in mutant brain slices revealed fewer puncta that were dynamically eliminated. Furthermore, EphrinA5-induced growth cone collapse in PV+ interneurons in culture depended on NCAM expression. Electrophysiological recording from layer 2/3 pyramidal cells in mutant PFC slices showed a slower rise time of inhibitory synaptic currents. PV-Cre: NCAM F/F mice exhibited impairments in working memory and social behavior that may be impacted by altered PFC circuitry. These findings suggest that the density of perisomatic synapses of PV+ basket interneurons is regulated postnatally by NCAM, likely through EphrinA-dependent elimination, which is important for appropriate PFC network function and behavior.


Asunto(s)
Interneuronas/metabolismo , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Neurogénesis/fisiología , Corteza Prefrontal/metabolismo , Sinapsis/fisiología , Animales , Conducta Animal , Femenino , Masculino , Memoria a Corto Plazo/fisiología , Ratones , Ratones Endogámicos C57BL , Corteza Prefrontal/crecimiento & desarrollo
2.
J Neurosci ; 39(32): 6233-6250, 2019 08 07.
Artículo en Inglés | MEDLINE | ID: mdl-31182634

RESUMEN

Dendritic spines in the developing mammalian neocortex are initially overproduced and then eliminated during adolescence to achieve appropriate levels of excitation in mature networks. We show here that the L1 family cell adhesion molecule Close Homolog of L1 (CHL1) and secreted repellent ligand Semaphorin 3B (Sema3B) function together to induce dendritic spine pruning in developing cortical pyramidal neurons. Loss of CHL1 in null mutant mice in both genders resulted in increased spine density and a greater proportion of immature spines on apical dendrites in the prefrontal and visual cortex. Electron microscopy showed that excitatory spine synapses with postsynaptic densities were increased in the CHL1-null cortex, and electrophysiological recording in prefrontal slices from mutant mice revealed deficiencies in excitatory synaptic transmission. Mechanistically, Sema3B protein induced elimination of spines on apical dendrites of cortical neurons cultured from wild-type but not CHL1-null embryos. Sema3B was secreted by the cortical neuron cultures, and its levels increased when cells were treated with the GABA antagonist gabazine. In vivo CHL1 was coexpressed with Sema3B in pyramidal neuron subpopulations and formed a complex with Sema3B receptor subunits Neuropilin-2 and PlexinA4. CHL1 and NrCAM, a closely related L1 adhesion molecule, localized primarily to distinct spines and promoted spine elimination to Sema3B or Sema3F, respectively. These results support a new concept in which selective spine elimination is achieved through different secreted semaphorins and L1 family adhesion molecules to sculpt functional neural circuits during postnatal maturation.SIGNIFICANCE STATEMENT Dendritic spines in the mammalian neocortex are initially overproduced and then pruned in adolescent life through unclear mechanisms to sculpt maturing cortical circuits. Here, we show that spine and excitatory synapse density of pyramidal neurons in the developing neocortex is regulated by the L1 adhesion molecule, Close Homolog of L1 (CHL1). CHL1 mediated spine pruning in response to the secreted repellent ligand Semaphorin 3B and associated with receptor subunits Neuropilin-2 and PlexinA4. CHL1 and related L1 adhesion molecule NrCAM localized to distinct spines, and promoted spine elimination to Semaphorin 3B and -3F, respectively. These results support a new concept in which selective elimination of individual spines and nascent synapses can be achieved through the action of distinct secreted semaphorins and L1 adhesion molecules.


Asunto(s)
Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Corteza Prefrontal/fisiología , Semaforinas/fisiología , Corteza Visual/fisiología , Envejecimiento/fisiología , Animales , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Femenino , Agonistas del GABA/farmacología , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Noqueados , Proteínas del Tejido Nervioso/fisiología , Neuropilina-2/fisiología , Técnicas de Placa-Clamp , Corteza Prefrontal/citología , Corteza Prefrontal/crecimiento & desarrollo , Mapeo de Interacción de Proteínas , Células Piramidales/efectos de los fármacos , Células Piramidales/fisiología , Células Piramidales/ultraestructura , Piridazinas/farmacología , Receptores de Superficie Celular/fisiología , Transmisión Sináptica , Corteza Visual/citología , Corteza Visual/crecimiento & desarrollo
3.
Dev Dyn ; 247(7): 934-950, 2018 07.
Artículo en Inglés | MEDLINE | ID: mdl-29536590

RESUMEN

BACKGROUND: In the cochlea, auditory development depends on precise patterns of innervation by afferent and efferent nerve fibers, as well as a stereotyped arrangement of hair and supporting cells. Neuronal cell adhesion molecule (NrCAM) is a homophilic cell adhesion molecule that controls diverse aspects of nervous system development, but the function of NrCAM in cochlear development is not well understood. RESULTS: Throughout cochlear innervation, NrCAM is detectable on spiral ganglion neuron (SGN) afferent and olivocochlear efferent fibers, and on the membranes of developing hair and supporting cells. Neonatal Nrcam-null cochleae show errors in type II SGN fasciculation, reduced efferent innervation, and defects in the stereotyped packing of hair and supporting cells. Nrcam loss also leads to dramatic changes in the profiles of presynaptic afferent and efferent synaptic markers at the time of hearing onset. Despite these numerous developmental defects, Nrcam-null adults do not show defects in auditory acuity, and by postnatal day 21, the developmental deficits in ribbon synapse distribution and sensory domain structure appear to have been corrected. CONCLUSIONS: NrCAM is expressed by several neural and sensory epithelial subtypes within the developing cochlea, and the loss of Nrcam confers numerous, but nonpermanent, developmental defects in innervation and sensory domain patterning. Developmental Dynamics 247:934-950, 2018. © 2018 Wiley Periodicals, Inc.


Asunto(s)
Tipificación del Cuerpo/fisiología , Moléculas de Adhesión Celular Neuronal/fisiología , Moléculas de Adhesión Celular/metabolismo , Cóclea/inervación , Células Receptoras Sensoriales/química , Animales , Orientación del Axón , Moléculas de Adhesión Celular/deficiencia , Moléculas de Adhesión Celular/fisiología , Cóclea/citología , Cóclea/crecimiento & desarrollo , Células Ciliadas Auditivas , Ratones , Ganglio Espiral de la Cóclea
4.
J Physiol ; 595(3): 919-934, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-27618790

RESUMEN

KEY POINTS: Synaptic transmission at the endbulb of Held was assessed by whole-cell patch clamp recordings from auditory neurons in mature (2-4 months) and aged (20-26 months) mice. Synaptic transmission is degraded in aged mice, which may contribute to the decline in neural processing of the central auditory system during age-related hearing loss. The changes in synaptic transmission in aged mice can be partially rescued by improving calcium buffering, or decreasing action potential-evoked calcium influx. These experiments suggest potential mechanisms, such as regulating intraterminal calcium, that could be manipulated to improve the fidelity of transmission at the aged endbulb of Held. ABSTRACT: Age-related hearing loss (ARHL) is associated with changes to the auditory periphery that raise sensory thresholds and alter coding, and is accompanied by alterations in excitatory and inhibitory synaptic transmission, and intrinsic excitability in the circuits of the central auditory system. However, it remains unclear how synaptic transmission changes at the first central auditory synapses during ARHL. Using mature (2-4 months) and old (20-26 months) CBA/CaJ mice, we studied synaptic transmission at the endbulb of Held. Mature and old mice showed no difference in either spontaneous quantal synaptic transmission or low frequency evoked synaptic transmission at the endbulb of Held. However, when challenged with sustained high frequency stimulation, synapses in old mice exhibited increased asynchronous transmitter release and reduced synchronous release. This suggests that the transmission of temporally precise information is degraded at the endbulb during ARHL. Increasing intraterminal calcium buffering with EGTA-AM or decreasing calcium influx with ω-agatoxin IVA decreased the amount of asynchronous release and restored synchronous release in old mice. In addition, recovery from depression following high frequency trains was faster in old mice, but was restored to a normal time course by EGTA-AM treatment. These results suggest that intraterminal calcium in old endbulbs may rise to abnormally high levels during high rates of auditory nerve firing, or that calcium-dependent processes involved in release are altered with age. These observations suggest that ARHL is associated with a decrease in temporal precision of synaptic release at the first central auditory synapse, which may contribute to perceptual deficits in hearing.


Asunto(s)
Envejecimiento/fisiología , Núcleo Coclear/fisiología , Pérdida Auditiva/fisiopatología , Animales , Potenciales Evocados Auditivos del Tronco Encefálico , Potenciales Postsinápticos Excitadores , Femenino , Masculino , Ratones Endogámicos CBA , Transmisión Sináptica
5.
J Neurosci ; 34(6): 2214-30, 2014 Feb 05.
Artículo en Inglés | MEDLINE | ID: mdl-24501361

RESUMEN

The cochlear nuclei are the first central processors of auditory information and provide inputs to all the major brainstem and midbrain auditory nuclei. Although the local circuits within the cochlear nuclei are understood at a cellular level, the spatial patterns of connectivity and the connection strengths in these circuits have been less well characterized. We have applied a novel, quantitative approach to mapping local circuits projecting to cells in the mouse anteroventral cochlear nucleus (AVCN) using laser-scanning photostimulation and glutamate uncaging. The amplitude and kinetics of individual evoked synaptic events were measured to reveal the patterns and strengths of synaptic connections. We found that the two major excitatory projection cell classes, the bushy and T-stellate cells, receive a spatially broad inhibition from D-stellate cells in the AVCN, and a spatially confined inhibition from the tuberculoventral cells of the dorsal cochlear nucleus. Furthermore, T-stellate cells integrate D-stellate inhibition from an area that spans twice the frequency range of that integrated by bushy cells. A subset of both bushy and T-stellate cells receives inhibition from an unidentified cell population at the dorsal-medial boundary of the AVCN. A smaller subset of cells receives local excitation from within the AVCN. Our results show that inhibitory circuits can have target-specific patterns of spatial convergence, synaptic strength, and receptor kinetics, resulting in different spectral and temporal processing capabilities.


Asunto(s)
Mapeo Encefálico/métodos , Núcleo Coclear/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología , Animales , Vías Auditivas/fisiología , Potenciales Postsinápticos Excitadores/fisiología , Femenino , Potenciales Postsinápticos Inhibidores/fisiología , Masculino , Ratones , Ratones Endogámicos CBA , Técnicas de Cultivo de Órganos
6.
J Neurosci ; 34(34): 11274-87, 2014 Aug 20.
Artículo en Inglés | MEDLINE | ID: mdl-25143608

RESUMEN

Neuron-glial related cell adhesion molecule (NrCAM) is a regulator of axon growth and repellent guidance, and has been implicated in autism spectrum disorders. Here a novel postsynaptic role for NrCAM in Semaphorin3F (Sema3F)-induced dendritic spine remodeling was identified in pyramidal neurons of the primary visual cortex (V1). NrCAM localized to dendritic spines of star pyramidal cells in postnatal V1, where it was coexpressed with Sema3F. NrCAM deletion in mice resulted in elevated spine densities on apical dendrites of star pyramidal cells at both postnatal and adult stages, and electron microscopy revealed increased numbers of asymmetric synapses in layer 4 of V1. Whole-cell recordings in cortical slices from NrCAM-null mice revealed increased frequency of mEPSCs in star pyramidal neurons. Recombinant Sema3F-Fc protein induced spine retraction on apical dendrites of wild-type, but not NrCAM-null cortical neurons in culture, while re-expression of NrCAM rescued the spine retraction response. NrCAM formed a complex in brain with Sema3F receptor subunits Neuropilin-2 (Npn-2) and PlexinA3 (PlexA3) through an Npn-2-binding sequence (TARNER) in the extracellular Ig1 domain. A trans heterozygous genetic interaction test demonstrated that Sema3F and NrCAM pathways interacted in vivo to regulate spine density in star pyramidal neurons. These findings reveal NrCAM as a novel postnatal regulator of dendritic spine density in cortical pyramidal neurons, and an integral component of the Sema3F receptor complex. The results implicate NrCAM as a contributor to excitatory/inhibitory balance in neocortical circuits.


Asunto(s)
Encéfalo/citología , Moléculas de Adhesión Celular/fisiología , Espinas Dendríticas/fisiología , Regulación del Desarrollo de la Expresión Génica/fisiología , Proteínas de la Membrana/metabolismo , Proteínas del Tejido Nervioso/metabolismo , Neuronas/ultraestructura , Factores de Edad , Animales , Animales Recién Nacidos , Encéfalo/embriología , Encéfalo/crecimiento & desarrollo , Moléculas de Adhesión Celular/deficiencia , Células Cultivadas , Chlorocebus aethiops , Espinas Dendríticas/ultraestructura , Embrión de Mamíferos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Antagonistas del GABA/farmacología , Regulación del Desarrollo de la Expresión Génica/genética , Proteínas Fluorescentes Verdes/genética , Proteínas Fluorescentes Verdes/metabolismo , Humanos , Proteínas de la Membrana/deficiencia , Ratones , Ratones Endogámicos C57BL , Ratones Transgénicos , Mutación/genética , Proteínas del Tejido Nervioso/deficiencia , Bloqueadores de los Canales de Sodio/farmacología , Fracciones Subcelulares/metabolismo , Fracciones Subcelulares/ultraestructura
7.
J Neurosci ; 33(4): 1598-614, 2013 Jan 23.
Artículo en Inglés | MEDLINE | ID: mdl-23345233

RESUMEN

The acoustic environment contains biologically relevant information on timescales from microseconds to tens of seconds. The auditory brainstem nuclei process this temporal information through parallel pathways that originate in the cochlear nucleus from different classes of cells. Although the roles of ion channels and excitatory synapses in temporal processing have been well studied, the contribution of inhibition is less well understood. Here, we show in CBA/CaJ mice that the two major projection neurons of the ventral cochlear nucleus, the bushy and T-stellate cells, receive glycinergic inhibition with different synaptic conductance time courses. Bushy cells, which provide precisely timed spike trains used in sound localization and pitch identification, receive slow inhibitory inputs. In contrast, T-stellate cells, which encode slower envelope information, receive inhibition that is eightfold faster. Both types of inhibition improved the precision of spike timing but engage different cellular mechanisms and operate on different timescales. Computer models reveal that slow IPSCs in bushy cells can improve spike timing on the scale of tens of microseconds. Although fast and slow IPSCs in T-stellate cells improve spike timing on the scale of milliseconds, only fast IPSCs can enhance the detection of narrowband acoustic signals in a complex background. Our results suggest that target-specific IPSC kinetics are critical for the segregated parallel processing of temporal information from the sensory environment.


Asunto(s)
Vías Auditivas/fisiología , Percepción Auditiva/fisiología , Simulación por Computador , Potenciales Postsinápticos Inhibidores/fisiología , Modelos Neurológicos , Neuronas/fisiología , Animales , Potenciales Postsinápticos Excitadores/fisiología , Ratones , Técnicas de Cultivo de Órganos , Técnicas de Placa-Clamp
8.
Cereb Cortex ; 23(1): 162-77, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22275477

RESUMEN

A novel function for the neural cell adhesion molecule (NCAM) was identified in ephrinA/EphA-mediated repulsion as an important regulatory mechanism for development of GABAergic inhibitory synaptic connections in mouse prefrontal cortex. Deletion of NCAM, EphA3, or ephrinA2/3/5 in null mutant mice increased the numbers and size of perisomatic synapses between GABAergic basket interneurons and pyramidal cells in the developing cingulate cortex (layers II/III). A functional consequence of NCAM loss was increased amplitudes and faster kinetics of miniature inhibitory postsynaptic currents in NCAM null cingulate cortex. NCAM and EphA3 formed a molecular complex and colocalized with the inhibitory presynaptic marker vesicular GABA transporter (VGAT) in perisomatic puncta and neuropil in the cingulate cortex. EphrinA5 treatment promoted axon remodeling of enhanced green fluorescent protein-labeled basket interneurons in cortical slice cultures and induced growth cone collapse in wild-type but not NCAM null mutant neurons. NCAM modified with polysialic acid (PSA) was required to promote ephrinA5-induced axon remodeling of basket interneurons in cortical slices, likely by providing a permissive environment for ephrinA5/EphA3 signaling. These results reveal a new mechanism in which NCAM and ephrinAs/EphA3 coordinate to constrain GABAergic interneuronal arborization and perisomatic innervation, potentially contributing to excitatory/inhibitory balance in prefrontal cortical circuitry.


Asunto(s)
Efrinas/metabolismo , Neuronas GABAérgicas/fisiología , Interneuronas/fisiología , Moléculas de Adhesión de Célula Nerviosa/metabolismo , Plasticidad Neuronal/fisiología , Corteza Prefrontal/fisiología , Sinapsis/fisiología , Animales , Células Cultivadas , Femenino , Masculino , Ratones , Ratones Transgénicos , Ácido gamma-Aminobutírico/metabolismo
9.
J Neurophysiol ; 110(8): 1848-59, 2013 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-23904491

RESUMEN

The principal inhibitory neurotransmitter in the mammalian cochlear nucleus (CN) is glycine. During age-related hearing loss (AHL), glycinergic inhibition becomes weaker in CN. However, it is unclear what aspects of glycinergic transmission are responsible for weaker inhibition with AHL. We examined glycinergic transmission onto bushy cells of the anteroventral CN in normal-hearing CBA/CaJ mice and in DBA/2J mice, a strain that exhibits an early onset AHL. Glycinergic synaptic transmission was examined in brain slices of mice at 10-15 postnatal days old, 20-35 days old, and at 6-7 mo old. Spontaneous inhibitory postsynaptic current (sIPSC) event frequency and amplitude were the same among all three ages in both strains of mice. However, the amplitudes of IPSCs evoked (eIPSC) from stimulating the dorsal CN were smaller, and the failure rate was higher, with increasing age due to decreased quantal content in both mouse strains, independent of hearing status. The coefficient of variation of the eIPSC amplitude also increased with age. The decay time constant (τ) of sIPSCs and eIPSCs were constant in CBA/CaJ mice at all ages, but were significantly slower in DBA/2J mice at postnatal days 20-35, following the onset of AHL, and not at earlier or later ages. Our results suggest that glycinergic inhibition at the synapses onto bushy cells becomes weaker and less reliable with age through changes in release. However, the hearing loss in DBA/2J mice is accompanied by a transiently enhanced inhibition, which could disrupt the balance of excitation and inhibition.


Asunto(s)
Núcleo Coclear/fisiología , Pérdida Auditiva/fisiopatología , Audición , Potenciales Postsinápticos Inhibidores , Factores de Edad , Animales , Núcleo Coclear/citología , Núcleo Coclear/fisiopatología , Glicina/metabolismo , Pérdida Auditiva/genética , Ratones , Ratones Endogámicos , Neuronas/metabolismo , Neuronas/fisiología , Sinapsis/metabolismo , Sinapsis/fisiología
10.
Elife ; 122023 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-37288824

RESUMEN

Globular bushy cells (GBCs) of the cochlear nucleus play central roles in the temporal processing of sound. Despite investigation over many decades, fundamental questions remain about their dendrite structure, afferent innervation, and integration of synaptic inputs. Here, we use volume electron microscopy (EM) of the mouse cochlear nucleus to construct synaptic maps that precisely specify convergence ratios and synaptic weights for auditory nerve innervation and accurate surface areas of all postsynaptic compartments. Detailed biophysically based compartmental models can help develop hypotheses regarding how GBCs integrate inputs to yield their recorded responses to sound. We established a pipeline to export a precise reconstruction of auditory nerve axons and their endbulb terminals together with high-resolution dendrite, soma, and axon reconstructions into biophysically detailed compartmental models that could be activated by a standard cochlear transduction model. With these constraints, the models predict auditory nerve input profiles whereby all endbulbs onto a GBC are subthreshold (coincidence detection mode), or one or two inputs are suprathreshold (mixed mode). The models also predict the relative importance of dendrite geometry, soma size, and axon initial segment length in setting action potential threshold and generating heterogeneity in sound-evoked responses, and thereby propose mechanisms by which GBCs may homeostatically adjust their excitability. Volume EM also reveals new dendritic structures and dendrites that lack innervation. This framework defines a pathway from subcellular morphology to synaptic connectivity, and facilitates investigation into the roles of specific cellular features in sound encoding. We also clarify the need for new experimental measurements to provide missing cellular parameters, and predict responses to sound for further in vivo studies, thereby serving as a template for investigation of other neuron classes.


Asunto(s)
Núcleo Coclear , Percepción del Tiempo , Animales , Ratones , Núcleo Coclear/fisiología , Modelos Epidemiológicos , Neuronas/fisiología , Nervio Coclear/fisiología , Sinapsis/fisiología , Transmisión Sináptica/fisiología
11.
Eur J Neurosci ; 33(3): 409-20, 2011 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21198989

RESUMEN

In addition to auditory inputs, dorsal cochlear nucleus (DCN) pyramidal cells in the guinea pig receive and respond to somatosensory inputs and perform multisensory integration. DCN pyramidal cells respond to sounds with characteristic spike-timing patterns that are partially controlled by rapidly inactivating potassium conductances. Deactivating these conductances can modify both spike rate and spike timing of responses to sound. Somatosensory pathways are known to modify response rates to subsequent acoustic stimuli, but their effect on spike timing is unknown. Here, we demonstrate that preceding tonal stimulation with spinal trigeminal nucleus (Sp5) stimulation significantly alters the first spike latency, the first interspike interval and the average discharge regularity of firing evoked by the tone. These effects occur whether the neuron is excited or inhibited by Sp5 stimulation alone. Our results demonstrate that multisensory integration in DCN alters spike-timing representations of acoustic stimuli in pyramidal cells. These changes likely occur through synaptic modulation of intrinsic excitability or synaptic inhibition.


Asunto(s)
Vías Aferentes/fisiología , Núcleo Coclear/fisiología , Células Piramidales/fisiología , Estimulación Acústica , Potenciales de Acción/fisiología , Animales , Estimulación Eléctrica , Femenino , Cobayas
12.
J Neurophysiol ; 104(5): 2693-703, 2010 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-20884760

RESUMEN

Sensorineural hearing loss during early childhood alters auditory cortical evoked potentials in humans and profoundly changes auditory processing in hearing-impaired animals. Multiple mechanisms underlie the early postnatal establishment of cortical circuits, but one important set of developmental mechanisms relies on the neuromodulator serotonin (5-hydroxytryptamine [5-HT]). On the other hand, early sensory activity may also regulate the establishment of adultlike 5-HT receptor expression and function. We examined the role of 5-HT in auditory cortex by first investigating how 5-HT neurotransmission and 5-HT(2) receptors influence the intrinsic excitability of layer II/III pyramidal neurons in brain slices of primary auditory cortex (A1). A brief application of 5-HT (50 µM) transiently and reversibly decreased firing rates, input resistance, and spike rate adaptation in normal postnatal day 12 (P12) to P21 rats. Compared with sham-operated animals, cochlear ablation increased excitability at P12-P21, but all the effects of 5-HT, except for the decrease in adaptation, were eliminated in both sham-operated and cochlear-ablated rats. At P30-P35, cochlear ablation did not increase intrinsic excitability compared with shams, but it did prevent a pronounced decrease in excitability that appeared 10 min after 5-HT application. We also tested whether the effects on excitability were mediated by 5-HT(2) receptors. In the presence of the 5-HT(2)-receptor antagonist, ketanserin, 5-HT significantly decreased excitability compared with 5-HT or ketanserin alone in both sham-operated and cochlear-ablated P12-P21 rats. However, at P30-P35, ketanserin had no effect in sham-operated and only a modest effect cochlear-ablated animals. The 5-HT(2)-specific agonist 5-methoxy-N,N-dimethyltryptamine also had no effect at P12-P21. These results suggest that 5-HT likely regulates pyramidal cell excitability via multiple receptor subtypes with opposing effects. These data also show that early sensorineural hearing loss affects the ability of 5-HT receptor activation to modulate A1 pyramidal cell excitability.


Asunto(s)
Corteza Auditiva/fisiopatología , Pérdida Auditiva/fisiopatología , Neuronas/fisiología , Serotonina/metabolismo , Análisis de Varianza , Animales , Corteza Auditiva/efectos de los fármacos , Corteza Auditiva/metabolismo , Electrofisiología , Pérdida Auditiva/metabolismo , Potenciales de la Membrana/efectos de los fármacos , Potenciales de la Membrana/fisiología , Neuronas/efectos de los fármacos , Ratas , Ratas Sprague-Dawley , Receptores de Serotonina 5-HT2/metabolismo , Serotonina/farmacología , Transmisión Sináptica/efectos de los fármacos , Transmisión Sináptica/fisiología
13.
PLoS One ; 14(10): e0223137, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31581200

RESUMEN

The cochlear nucleus (CN) transforms the spike trains of spiral ganglion cells into a set of sensory representations that are essential for auditory discriminations and perception. These transformations require the coordinated activity of different classes of neurons that are embryologically derived from distinct sets of precursors. Decades of investigation have shown that the neurons of the CN are differentiated by their morphology, neurotransmitter receptors, ion channel expression and intrinsic excitability. In the present study we have used linear discriminant analysis (LDA) to perform an unbiased analysis of measures of the responses of CN neurons to current injections to objectively categorize cells on the basis of both morphology and physiology. Recordings were made from cells in brain slices from CBA/CaJ mice and a transgenic mouse line, NF107, crossed against the Ai32 line. For each cell, responses to current injections were analyzed for spike rate, spike shape, input resistance, resting membrane potential, membrane time constant, hyperpolarization-activated sag and time constant. Cells were filled with dye for morphological classification, and visually classified according to published accounts. The different morphological classes of cells were separated with the LDA. Ventral cochlear nucleus (VCN) bushy cells, planar multipolar (T-stellate) cells, and radiate multipolar (D-stellate) cells were in separate clusters and separate from all of the neurons from the dorsal cochlear nucleus (DCN). Within the DCN, the pyramidal cells and tuberculoventral cells were largely separated from a distinct cluster of cartwheel cells. principal axes, whereas VCN cells were in 3 clouds approximately orthogonal to this plane. VCN neurons from the two mouse strains overlapped but were slightly separated, indicating either a strain dependence or differences in slice preparation methods. We conclude that cochlear nucleus neurons can be objectively distinguished based on their intrinsic electrical properties, but such distinctions are still best aided by morphological identification.


Asunto(s)
Envejecimiento/fisiología , Núcleo Coclear/fisiología , Análisis Discriminante , Neuronas/clasificación , Potenciales de Acción/fisiología , Animales , Forma de la Célula , Ratones Endogámicos CBA , Análisis de Componente Principal
14.
Hear Res ; 244(1-2): 45-50, 2008 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-18718516

RESUMEN

Maturation of the mammalian cerebral cortex is, in part, dependent upon multiple coordinated afferent neurotransmitter systems and receptor-mediated cellular linkages during early postnatal development. Given that serotonin (5-HT) is one such system, the present study was designed to specifically evaluate 5-HT tissue content as well as 5-HT(2A) receptor protein levels within the developing auditory cortex (AC). Using high performance liquid chromatography (HPLC), 5-HT and the metabolite, 5-hydroxyindoleacetic acid (5-HIAA), was measured in isolated AC, which demonstrated a developmental dynamic, reaching young adult levels early during the second week of postnatal development. Radioligand binding of 5-HT(2A) receptors with the 5-HT(2A/2C) receptor agonist, (125)I-DOI ((+/-)-1-(2,5-dimethoxy-4-iodophenyl)-2-aminopropane HCl; in the presence of SB206553, a selective 5-HT(2C) receptor antagonist, also demonstrated a developmental trend, whereby receptor protein levels reached young adult levels at the end of the first postnatal week (P8), significantly increased at P10 and at P17, and decreased back to levels not significantly different from P8 thereafter. Immunocytochemical labeling of 5-HT(2A) receptors and confocal microscopy revealed that 5-HT(2A) receptors are largely localized on layer II/III pyramidal cell bodies and apical dendrites within AC. When considered together, the results of the present study suggest that 5-HT, likely through 5-HT(2A) receptors, may play an important role in early postnatal AC development.


Asunto(s)
Corteza Auditiva/metabolismo , Receptor de Serotonina 5-HT2A/biosíntesis , Serotonina/biosíntesis , Animales , Cromatografía Líquida de Alta Presión , Humanos , Inmunohistoquímica/métodos , Indoles/farmacología , Microscopía Confocal , Modelos Biológicos , Células Piramidales/metabolismo , Piridinas/farmacología , Ratas , Ratas Sprague-Dawley , Antagonistas de la Serotonina/farmacología , Factores de Tiempo
15.
Hear Res ; 360: 76-91, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29331233

RESUMEN

Models of the auditory brainstem have been an invaluable tool for testing hypotheses about auditory information processing and for highlighting the most important gaps in the experimental literature. Due to the complexity of the auditory brainstem, and indeed most brain circuits, the dynamic behavior of the system may be difficult to predict without a detailed, biologically realistic computational model. Despite the sensitivity of models to their exact construction and parameters, most prior models of the cochlear nucleus have incorporated only a small subset of the known biological properties. This confounds the interpretation of modelling results and also limits the potential future uses of these models, which require a large effort to develop. To address these issues, we have developed a general purpose, biophysically detailed model of the cochlear nucleus for use both in testing hypotheses about cochlear nucleus function and also as an input to models of downstream auditory nuclei. The model implements conductance-based Hodgkin-Huxley representations of cells using a Python-based interface to the NEURON simulator. Our model incorporates most of the quantitatively characterized intrinsic cell properties, synaptic properties, and connectivity available in the literature, and also aims to reproduce the known response properties of the canonical cochlear nucleus cell types. Although we currently lack the empirical data to completely constrain this model, our intent is for the model to continue to incorporate new experimental results as they become available.


Asunto(s)
Vías Auditivas/fisiología , Núcleo Coclear/fisiología , Potenciales Evocados Auditivos del Tronco Encefálico , Audición , Modelos Neurológicos , Estimulación Acústica , Animales , Vías Auditivas/citología , Núcleo Coclear/citología , Simulación por Computador , Humanos
16.
Front Neural Circuits ; 11: 77, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-29093666

RESUMEN

Radiate and planar neurons are the two major types of multipolar neurons in the ventral cochlear nucleus (VCN). Both cell types receive monosynaptic excitatory synaptic inputs from the auditory nerve, but have different responses to sound and project to different target regions and cells. Although the intrinsic physiology and synaptic inputs to planar neurons have been previously characterized, the radiate neurons are less common and have not been as well studied. We studied both types of multipolar neurons and characterized their properties including intrinsic excitability, synaptic dynamics of their auditory nerve inputs, as well as their neural firing properties to auditory nerve stimulation. Radiate neurons had a faster member time constant and higher threshold current to fire spikes than planar neurons, but the maximal firing rate is the same for both cell types upon large current injections. Compared to planar neurons, radiate neurons showed spontaneous postsynaptic currents with smaller size, and slower but variable kinetics. Auditory nerve stimulation progressively recruited synaptic inputs that were smaller and slower in radiate neurons, over a broader range of stimulus strength. Synaptic inputs to radiate neurons showed less depression than planar neurons during low rates of repetitive activity, but the synaptic depression at higher rates was similar between two cell types. However, due to the slow kinetics of the synaptic inputs, synaptic transmission in radiate neurons showed prominent temporal summation that contributed to greater synaptic depolarization and a higher firing rate for repetitive auditory nerve stimulation at high rates. Taken together, these results show that radiate multipolar neurons integrate a large number of weak synaptic inputs over a broad dynamic range, and have intrinsic and synaptic properties that are distinct from planar multipolar neurons. These properties enable radiate neurons to generate powerful inhibitory inputs to target neurons during high levels of afferent activity. Such robust inhibition is expected to dynamically modulate the excitability of many cell types in the cochlear nuclear complex.


Asunto(s)
Núcleo Coclear/citología , Núcleo Coclear/fisiología , Neuronas/citología , Neuronas/fisiología , Potenciales de Acción , Animales , Nervio Coclear/citología , Nervio Coclear/fisiología , Estimulación Eléctrica , Potenciales Postsinápticos Excitadores , Audición/fisiología , Ratones Endogámicos CBA , Técnicas de Placa-Clamp , Técnicas de Cultivo de Tejidos
18.
Front Neural Circuits ; 11: 19, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28386219

RESUMEN

The neural cell adhesion molecule (NCAM), has been shown to be an obligate regulator of synaptic stability and pruning during critical periods of cortical maturation. However, the functional consequences of NCAM deletion on the organization of inhibitory circuits in cortex are not known. In vesicular gamma-amino butyric acid (GABA) transporter (VGAT)-channelrhodopsin2 (ChR2)-enhanced yellow fluorescent protein (EYFP) transgenic mice, NCAM is expressed postnatally at perisomatic synaptic puncta of EYFP-labeled parvalbumin, somatostatin and calretinin-positive interneurons, and in the neuropil in the anterior cingulate cortex (ACC). To investigate how NCAM deletion affects the spatial organization of inhibitory inputs to pyramidal cells, we used laser scanning photostimulation in brain slices of VGAT-ChR2-EYFP transgenic mice crossed to either NCAM-null or wild type (WT) mice. Laser scanning photostimulation revealed that NCAM deletion increased the strength of close-in inhibitory connections to layer 2/3 pyramidal cells of the ACC. In addition, in NCAM-null mice, the intrinsic excitability of pyramidal cells increased, whereas the intrinsic excitability of GABAergic interneurons did not change. The increase in inhibitory tone onto pyramidal cells, and the increased pyramidal cell excitability in NCAM-null mice will alter the delicate coordination of excitation and inhibition (E/I coordination) in the ACC, and may be a factor contributing to circuit dysfunction in diseases such as schizophrenia and bipolar disorder, in which NCAM has been implicated.


Asunto(s)
Fenómenos Electrofisiológicos/fisiología , Giro del Cíngulo/fisiología , Moléculas de Adhesión de Célula Nerviosa/fisiología , Células Piramidales/fisiología , Animales , Giro del Cíngulo/citología , Ratones , Ratones Endogámicos C57BL , Ratones Mutantes , Ratones Transgénicos , Microscopía Confocal , Inhibición Neural/fisiología , Técnicas de Placa-Clamp , Células Piramidales/citología
19.
J Assoc Res Otolaryngol ; 7(4): 412-24, 2006 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-17066341

RESUMEN

The bushy cells of the anterior ventral cochlear nucleus (AVCN) preserve or improve the temporal coding of sound information arriving from auditory nerve fibers (ANF). The critical cellular mechanisms entailed in this process include the specialized nerve terminals, the endbulbs of Held, and the membrane conductance configuration of the bushy cell. In one strain of mice (DBA/2J), an early-onset hearing loss can cause a reduction in neurotransmitter release probability, and a smaller and slower spontaneous miniature excitatory postsynaptic current (EPSC) at the endbulb synapse. In the present study, by using a brain slice preparation, we tested the hypothesis that these changes in synaptic transmission would degrade the transmission of timing information from the ANF to the AVCN bushy neuron. We show that the electrical excitability of bushy cells in hearing-impaired old DBA mice was different from that in young, normal-hearing DBA mice. We found an increase in the action potential (AP) firing threshold with current injection; a larger AP afterhyperpolarization; and an increase in the number of spikes produced by large depolarizing currents. We also tested the temporal precision of bushy cell responses to high-frequency stimulation of the ANF. The standard deviation of spikes (spike jitter) produced by ANF-evoked excitatory postsynaptic potentials (EPSPs) was largely unaffected in old DBA mice. However, spike entrainment during a 100-Hz volley of EPSPs was significantly reduced. This was not a limitation of the ability of bushy cells to fire APs at this stimulus frequency, because entrainment to trains of current pulses was unaffected. Moreover, the decrease in entrainment is not attributable to increased synaptic depression. Surprisingly, the spike latency was 0.46 ms shorter in old DBA mice, and was apparently attributable to a faster conduction velocity, since the evoked excitatory postsynaptic current (EPSC) latency was shorter in old DBA mice as well. We also tested the contribution of the low-voltage-activated K+ conductance (g (KLV)) on the spike latency by using dynamic clamp. Alteration in g (KLV) had little effect on the spike latency. To test whether these changes in DBA mice were simply a result of continued postnatal maturation, we repeated the experiments in CBA mice, a strain that shows normal hearing thresholds through this age range. CBA mice exhibited no reduction in entrainment or increased spike jitter with age. We conclude that the ability of AVCN bushy neurons to reliably follow ANF EPSPs is compromised in a frequency-dependent fashion in hearing-impaired mice. This effect can be best explained by an increase in spike threshold.


Asunto(s)
Núcleo Coclear/fisiopatología , Pérdida Auditiva Sensorineural/fisiopatología , Factores de Edad , Animales , Núcleo Coclear/citología , Ratones , Ratones Endogámicos CBA , Ratones Endogámicos DBA , Tiempo de Reacción , Sinapsis/fisiología , Factores de Tiempo
20.
Hear Res ; 211(1-2): 114-25, 2006 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-16337757

RESUMEN

Voltage gated potassium channels play critical roles in determining the responses of auditory brainstem neurons to acoustic stimuli. In the present study, we examined the developmental expression of potassium channels in rat cochlear nucleus. Quantitative RT-PCR revealed that Kv1.1 , Kv1.2 and Kv3.1 showed a monotonic increase in mRNA levels from postnatal days 3-28 (P3-P28), after which mRNA level was relatively constant until P56. In contrast, Kv4.2 mRNA levels were lower on average by a factor of 2 after P28 than before P28. Relative to Kv1.1, Kv3.1 and Kv1.2 mRNA were more abundant before P10 and less abundant thereafter. To address the relationship between message and protein levels, we performed semi-quantitative Western blotting for Kv1.2. The message for Kv1.2 increased earlier in development than the protein levels. Immunocytochemistry revealed a broad expression of Kv1.1 and Kv1.2 in the VCN. Staining intensity increased from 7-28 days postnatal. Kv1.2 immunostaining was less variable across cells than Kv1.1 staining. We conclude that maturation of potassium channel expression in the rat cochlear nucleus continues until at least 4 weeks postnatal.


Asunto(s)
Núcleo Coclear/crecimiento & desarrollo , Núcleo Coclear/metabolismo , Canales de Potasio/genética , Canales de Potasio/metabolismo , Factores de Edad , Animales , Secuencia de Bases , Regulación del Desarrollo de la Expresión Génica , ARN Mensajero/genética , ARN Mensajero/metabolismo , Ratas , Ratas Sprague-Dawley , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA