Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(3): e2216458120, 2023 01 17.
Artículo en Inglés | MEDLINE | ID: mdl-36626557

RESUMEN

The lack of techniques for noninvasive imaging of inflammation has challenged precision medicine management of acute respiratory distress syndrome (ARDS). Here, we determined the potential of positron emission tomography (PET) of chemokine-like receptor-1 (CMKLR1) to monitor lung inflammation in a murine model of lipopolysaccharide-induced injury. Lung uptake of a CMKLR1-targeting radiotracer, [64Cu]NODAGA-CG34, was significantly increased in lipopolysaccharide-induced injury, correlated with the expression of multiple inflammatory markers, and reduced by dexamethasone treatment. Monocyte-derived macrophages, followed by interstitial macrophages and monocytes were the major CMKLR1-expressing leukocytes contributing to the increased tracer uptake throughout the first week of lipopolysaccharide-induced injury. The clinical relevance of CMKLR1 as a biomarker of lung inflammation in ARDS was confirmed using single-nuclei RNA-sequencing datasets which showed significant increases in CMKLR1 expression among transcriptionally distinct subsets of lung monocytes and macrophages in COVID-19 patients vs. controls. CMKLR1-targeted PET is a promising strategy to monitor the dynamics of lung inflammation and response to anti-inflammatory treatment in ARDS.


Asunto(s)
Lesión Pulmonar Aguda , COVID-19 , Síndrome de Dificultad Respiratoria , Humanos , Ratones , Animales , Lipopolisacáridos/toxicidad , Lesión Pulmonar Aguda/inducido químicamente , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/metabolismo , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Quimiocinas/metabolismo , Síndrome de Dificultad Respiratoria/diagnóstico por imagen , Imagen Molecular , Receptores de Quimiocina
2.
J Nucl Cardiol ; 29(3): 1266-1276, 2022 06.
Artículo en Inglés | MEDLINE | ID: mdl-33420659

RESUMEN

BACKGROUND: Metabolic divergence of macrophages polarized into different phenotypes represents a mechanistically relevant target for non-invasive characterization of atherosclerotic plaques using positron emission tomography (PET). Carbon-11 (11C)-labeled acetate is a clinically available tracer which accumulates in atherosclerotic plaques, but its biological and clinical correlates in atherosclerosis are undefined. METHODS AND RESULTS: Histological correlates of 14C-acetate uptake were determined in brachiocephalic arteries of western diet-fed apoE-/- mice. The effect of polarizing stimuli on 14C-acetate uptake was determined by proinflammatory (interferon-γ + lipopolysaccharide) vs inflammation-resolving (interleukin-4) stimulation of murine macrophages and human carotid endarterectomy specimens over 2 days. 14C-acetate accumulated in atherosclerotic regions of arteries. CD68-positive monocytes/macrophages vs smooth muscle actin-positive smooth muscle cells were the dominant cells in regions with high vs low 14C-acetate uptake. 14C-acetate uptake progressively decreased in proinflammatory macrophages to 25.9 ± 4.5% of baseline (P < .001). A delayed increase in 14C-acetate uptake was induced in inflammation-resolving macrophages, reaching to 164.1 ± 21.4% (P < .01) of baseline. Consistently, stimulation of endarterectomy specimens with interferon-γ + lipopolysaccharide decreased 14C-acetate uptake to 66.5 ± 14.5%, while interleukin-4 increased 14C-acetate uptake to 151.5 ± 25.8% compared to non-stimulated plaques (P < .05). CONCLUSIONS: Acetate uptake by macrophages diverges upon proinflammatory and inflammation-resolving stimulation, which may be exploited for immunometabolic characterization of atherosclerosis.


Asunto(s)
Aterosclerosis , Placa Aterosclerótica , Acetatos/metabolismo , Animales , Aterosclerosis/diagnóstico por imagen , Aterosclerosis/metabolismo , Humanos , Inflamación/diagnóstico por imagen , Interferón gamma/metabolismo , Interleucina-4/metabolismo , Lipopolisacáridos , Macrófagos/metabolismo , Macrófagos/patología , Ratones , Placa Aterosclerótica/diagnóstico por imagen , Placa Aterosclerótica/patología , Tomografía Computarizada por Rayos X
3.
J Am Chem Soc ; 140(26): 8228-8235, 2018 07 05.
Artículo en Inglés | MEDLINE | ID: mdl-29874058

RESUMEN

Tryptophan indole 15N-1H signals are well separated in nuclear magnetic resonance (NMR) spectra of proteins. Assignment of the indole 15N-1H signals therefore enables one to obtain site-specific information on complex proteins in supramacromolecular systems, even when extensive assignment of backbone 15N-1H resonances is challenging. Here we exploit the unique indole 15N-1H chemical shift by introducing extrinsic tryptophan reporter residues at judiciously chosen locations in a membrane protein for increased coverage of structure and function by NMR. We demonstrate this approach with three variants of the human A2A adenosine receptor (A2AAR), a class A G protein-coupled receptor, each containing a single extrinsic tryptophan near the receptor intracellular surface, in helix V, VI, or VII, respectively. We show that the native A2AAR global protein fold and ligand binding activity are preserved in these A2AAR variants. The indole 15N-1H signals from the extrinsic tryptophan reporter residues show different responses to variable efficacy of drugs bound to the receptor orthosteric cavity, and the indole 15N-1H chemical shift of the tryptophan introduced at the intracellular end of helix VI is sensitive to conformational changes resulting from interactions with a polypeptide from the carboxy terminus of the GαS intracellular partner protein. Introducing extrinsic tryptophans into proteins in complex supramolecular systems thus opens new avenues for NMR investigations in solution.


Asunto(s)
Proteínas de la Membrana/química , Sondas Moleculares/química , Resonancia Magnética Nuclear Biomolecular , Receptor de Adenosina A2A/química , Triptófano/química , Humanos , Ligandos , Pichia/química
4.
J Org Chem ; 81(24): 12478-12481, 2016 12 16.
Artículo en Inglés | MEDLINE | ID: mdl-27978742

RESUMEN

A three-step synthesis of masked 2,3-diaminoindole 1 from 2-iodo-3-nitro-1-(phenylsulfonyl)indole (2) has been developed. Treatment of 1 with trifluoroacetic acid generates the unstable 2,3-diamino-1-(phenylsulfonyl)indole (3), which can be trapped with α-dicarbonyl compounds to afford 5H-pyrazino[2,3-b]indoles 7-10.

5.
J Org Chem ; 80(21): 11189-92, 2015 Nov 06.
Artículo en Inglés | MEDLINE | ID: mdl-26452053

RESUMEN

A new synthesis of dibenzo[a,c]anthracene (4) is described that features the generation, from tetrabromo-bis-triflate 1 and phenyllithium, of a 1,3,6-naphthotriyne (2) synthetic equivalent that is trapped with 3 equiv of furan to form Diels-Alder tris-adduct 3. A subsequent two-step deoxygenation of 3 represents the first synthesis of dibenz[a,c]anthracene (4) that involves a tandem aryne Diels-Alder cycloaddition-deoxygenation strategy.

6.
Sci Adv ; 10(25): eadm9817, 2024 Jun 21.
Artículo en Inglés | MEDLINE | ID: mdl-38896611

RESUMEN

Precision management of fibrotic lung diseases is challenging due to their diverse clinical trajectories and lack of reliable biomarkers for risk stratification and therapeutic monitoring. Here, we validated the accuracy of CMKLR1 as an imaging biomarker of the lung inflammation-fibrosis axis. By analyzing single-cell RNA sequencing datasets, we demonstrated CMKLR1 expression as a transient signature of monocyte-derived macrophages (MDMφ) enriched in patients with idiopathic pulmonary fibrosis (IPF). Consistently, we identified MDMφ as the major driver of the uptake of CMKLR1-targeting peptides in a murine model of bleomycin-induced lung fibrosis. Furthermore, CMKLR1-targeted positron emission tomography in the murine model enabled quantification and spatial mapping of inflamed lung regions infiltrated by CMKLR1-expressing macrophages and emerged as a robust predictor of subsequent lung fibrosis. Last, high CMKLR1 expression by bronchoalveolar lavage cells identified an inflammatory endotype of IPF with poor survival. Our investigation supports the potential of CMKLR1 as an imaging biomarker for endotyping and risk stratification of fibrotic lung diseases.


Asunto(s)
Fibrosis Pulmonar Idiopática , Neumonía , Animales , Humanos , Ratones , Fibrosis Pulmonar Idiopática/diagnóstico por imagen , Fibrosis Pulmonar Idiopática/patología , Fibrosis Pulmonar Idiopática/metabolismo , Fibrosis Pulmonar Idiopática/inducido químicamente , Neumonía/metabolismo , Neumonía/diagnóstico por imagen , Neumonía/patología , Macrófagos/metabolismo , Macrófagos/patología , Biomarcadores , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones/métodos , Fibrosis Pulmonar/diagnóstico por imagen , Fibrosis Pulmonar/patología , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/inducido químicamente , Bleomicina , Pulmón/patología , Pulmón/diagnóstico por imagen , Pulmón/metabolismo , Masculino , Femenino , Ratones Endogámicos C57BL
7.
Mol Imaging Biol ; 25(4): 681-691, 2023 08.
Artículo en Inglés | MEDLINE | ID: mdl-36941514

RESUMEN

PURPOSE: To image inflammation and monitor therapeutic response to anti-inflammatory intervention using 2-deoxy-2-[18F]fluoro-D-glucose ([18F]FDG) positron emission tomography (PET) in a preclinical model of acute lung injury (ALI). PROCEDURES: Mice were intratracheally administered lipopolysaccharide (LPS, 2.5 mg/kg) to induce ALI or phosphate-buffered saline as the vehicle control. A subset of mice in the ALI group received two intraperitoneal doses of dexamethasone 1 and 24 h after LPS. [18F]FDG PET/CT was performed 2 days after the induction of ALI. [18F]FDG uptake in the lungs was quantified by PET (%ID/mLmean and standardized uptake value (SUVmean)) and ex vivo γ-counting (%ID/g). The severity of lung inflammation was determined by quantifying the protein level of inflammatory cytokines/chemokines and the activity of neutrophil elastase and glycolytic enzymes. In separate groups of mice, flow cytometry was performed to estimate the contribution of individual immune cell types to the total pulmonary inflammatory cell burden under different treatment conditions. RESULTS: Lung uptake of [18F]FDG was significantly increased during LPS-induced ALI, and a decreased [18F]FDG uptake was observed following dexamethasone treatment to an intermediate level between that of LPS-treated and control mice. Protein expression of inflammatory biomarkers and the activity of neutrophil elastase and glycolytic enzymes were increased in the lungs of LPS-treated mice versus those of control mice, and correlated with [18F]FDG uptake. Furthermore, dexamethasone-induced decreases in cytokine/chemokine protein levels and enzyme activities correlated with [18F]FDG uptake. Neutrophils were the most abundant cells in LPS-induced ALI, and the pattern of total cell burden during ALI with or without dexamethasone therapy mirrored that of [18F]FDG uptake. CONCLUSIONS: [18F]FDG PET noninvasively detects lung inflammation in ALI and its response to anti-inflammatory therapy in a preclinical model. However, high [18F]FDG uptake by bone, brown fat, and myocardium remains a technical limitation for quantification of [18F]FDG in the lungs.


Asunto(s)
Lesión Pulmonar Aguda , Neumonía , Ratones , Animales , Fluorodesoxiglucosa F18 , Tomografía Computarizada por Tomografía de Emisión de Positrones , Elastasa de Leucocito , Glucosa , Lipopolisacáridos , Modelos Animales de Enfermedad , Tomografía de Emisión de Positrones , Neumonía/diagnóstico por imagen , Neumonía/tratamiento farmacológico , Lesión Pulmonar Aguda/diagnóstico por imagen , Lesión Pulmonar Aguda/tratamiento farmacológico , Lesión Pulmonar Aguda/metabolismo , Dexametasona/farmacología , Dexametasona/uso terapéutico
8.
EJNMMI Res ; 13(1): 55, 2023 Jun 05.
Artículo en Inglés | MEDLINE | ID: mdl-37273103

RESUMEN

BACKGROUND: The lack of noninvasive methods for assessment of dysregulated inflammation as a major driver of fibrosis (i.e., inflammation-fibrosis axis) has been a major challenge to precision management of fibrotic lung diseases. Here, we determined the potential of very late antigen-4 (VLA-4)-targeted positron emission tomography (PET) to detect inflammation in a mouse model of bleomycin-induced fibrotic lung injury. METHOD: Single time-point and longitudinal VLA-4-targeted PET was performed using a high-affinity peptidomimetic radiotracer, 64Cu-LLP2A, at weeks 1, 2, and 4 after bleomycin-induced (2.5 units/kg) lung injury in C57BL/6J mice. The severity of fibrosis was determined by measuring the hydroxyproline content of the lungs and expression of markers of extracellular matrix remodeling. Flow cytometry and histology was performed to determine VLA-4 expression across different leukocyte subsets and their spatial distribution. RESULTS: Lung uptake of 64Cu-LLP2A was significantly elevated throughout different stages of the progression of bleomycin-induced injury. High lung uptake of 64Cu-LLP2A at week-1 post-bleomycin was a predictor of poor survival over the 4-week follow up, supporting the prognostic potential of 64Cu-LLP2A PET during the early stage of the disease. Additionally, the progressive increase in 64Cu-LLP2A uptake from week-1 to week-4 post-bleomycin correlated with the ultimate extent of lung fibrosis and ECM remodeling. Flow cytometry revealed that LLP2A binding was restricted to leukocytes. A combination of increased expression of VLA-4 by alveolar macrophages and accumulation of VLA-4-expressing interstitial and monocyte-derived macrophages as well as dendritic cells was noted in bleomycin-injured, compared to control, lungs. Histology confirmed the increased expression of VLA-4 in bleomycin-injured lungs, particularly in inflamed and fibrotic regions. CONCLUSIONS: VLA-4-targeted PET allows for assessment of the inflammation-fibrosis axis and prediction of disease progression in a murine model. The potential of 64Cu-LLP2A PET for assessment of the inflammation-fibrosis axis in human fibrotic lung diseases needs to be further investigated.

9.
J Nucl Med ; 62(7): 896-902, 2021 07 01.
Artículo en Inglés | MEDLINE | ID: mdl-33963045

RESUMEN

Over the past decade, there has been a growing recognition of the links between intracellular metabolism and immune cell activation, that is, immunometabolism, and its consequences in atherogenesis. However, most immunometabolic investigations have been conducted in cultured cells through pharmacologic or genetic manipulations of selected immunologic or metabolic pathways, limiting their extrapolation to the complex microenvironment of plaques. In vivo metabolic imaging is ideally situated to address this gap and to determine the clinical implications of immunometabolic alterations for diagnosis and management of patients. Indeed, 18F-FDG has been widely used in clinical studies with promising results for risk stratification of atherosclerosis and monitoring the response to therapeutic interventions, though the biologic basis of its uptake in plaques has been evolving. Herein, we describe recent advances in understanding of immunometabolism of atherosclerosis with an emphasis on macrophages, and we review promising metabolic imaging approaches using 18F-FDG and other PET radiotracers.


Asunto(s)
Placa Aterosclerótica , Fluorodesoxiglucosa F18 , Humanos
11.
Chem Commun (Camb) ; 56(25): 3641-3644, 2020 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-32107512

RESUMEN

Site-specific placement of unnatural amino acids, particularly those responsive to light, offers an elegant approach to control protein function and capture their fleeting 'interactome'. Herein, we have resurrected 4-(trifluoromethyldiazirinyl)-phenylalanine, an underutilized photo-crosslinker, by introducing several key features including easy synthetic access, site-specific incorporation by 'privileged' synthetases and superior crosslinking efficiency, to develop photo-crosslinkable bromodomains suitable for 'interactome' profiling.


Asunto(s)
Aminoácidos/metabolismo , Aminoacil-ARNt Sintetasas/metabolismo , Reactivos de Enlaces Cruzados/metabolismo , Fenilalanina/metabolismo , Ingeniería de Proteínas , Aminoácidos/química , Aminoacil-ARNt Sintetasas/química , Reactivos de Enlaces Cruzados/síntesis química , Reactivos de Enlaces Cruzados/química , Estructura Molecular , Fenilalanina/análogos & derivados , Fenilalanina/química , Procesos Fotoquímicos
12.
J Med Chem ; 62(3): 1502-1522, 2019 02 14.
Artículo en Inglés | MEDLINE | ID: mdl-30605331

RESUMEN

(N)-Methanocarba ([3.1.0]bicyclohexyl) adenosines and corresponding ribosides were synthesized to identify novel A1 adenosine receptor (A1AR) agonists for CNS or peripheral applications. Human and mouse AR binding was determined to assess the constrained ring system's A1AR compatibility. N6-Dicyclobutylmethyl ribose agonist (9, MRS7469, >2000-fold selective for A1AR) and known truncated N6-dicyclopropylmethyl methanocarba 7 (MRS5474) were drug-like. The pure diastereoisomer of known riboside 4 displayed high hA1AR selectivity. Methanocarba modification reduced A1AR selectivity of N6-dicyclopropylmethyl and endo-norbornyladenosines but increased ribavirin selectivity. Most analogues tested (ip) were inactive or weak in inducing mouse hypothermia, despite mA1AR full agonism and variable mA3AR efficacy, but strong hypothermia by 9 depended on A1AR, which reflects CNS activity (determined using A1AR or A3AR null mice). Conserved hA1AR interactions were preserved in modeling of 9 and methanocarba equivalent 24 (∼400-fold A1AR-selective). Thus, we identified, and characterized in vivo, ribose and methanocarba nucleosides, including with A1AR-enhancing N6-dicyclobutylmethyl-adenine and 1,2,4-triazole-3-carboxamide (40, MRS7451) nucleobases.


Asunto(s)
Agonistas del Receptor de Adenosina A1/farmacología , Adenosina/análogos & derivados , Adenosina/farmacología , Compuestos Bicíclicos con Puentes/farmacología , Adenosina/síntesis química , Agonistas del Receptor de Adenosina A1/síntesis química , Agonistas del Receptor de Adenosina A1/farmacocinética , Animales , Compuestos Bicíclicos con Puentes/síntesis química , Compuestos Bicíclicos con Puentes/farmacocinética , Células CHO , Cricetulus , Diseño de Fármacos , Células HEK293 , Humanos , Macaca fascicularis , Masculino , Ratones Endogámicos C57BL , Simulación del Acoplamiento Molecular , Estructura Molecular , Receptor de Adenosina A1/metabolismo , Relación Estructura-Actividad
13.
Medchemcomm ; 9(11): 1920-1932, 2018 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-30568760

RESUMEN

Recognition of nucleosides at adenosine receptors (ARs) is supported by multiple X-ray structures, but the structure of an adenine complex is unknown. We examined the selectivity of predicted A1AR and A3AR adenine antagonists that incorporated known agonist affinity-enhancing N 6 and C2 substituents. Adenines with A1AR-favoring N 6-alkyl, cycloalkyl and arylalkyl substitutions combined with an A3AR-favoring 2-((5-chlorothiophen-2-yl)ethynyl) group were human (h) A3AR-selective, e.g. MRS7497 17 (∼1000-fold over A1AR). In addition, binding selectivity over hA2AAR and hA2BAR and functional A3AR antagonism were demonstrated. 17 was subjected to computational docking and molecular dynamics simulation in a hA3AR homology model to predict interactions. The SAR of nucleoside AR agonists was not recapitulated in adenine AR antagonists, and modeling suggested an alternative, inverted binding mode with the key N2506.55 H-bonding to the adenine N 3 and N 9, instead of N 6 and N 7 as in adenosine agonists.

14.
ACS Omega ; 3(10): 12658-12678, 2018 Oct 31.
Artículo en Inglés | MEDLINE | ID: mdl-30411015

RESUMEN

While screening off-target effects of rigid (N)-methanocarba-adenosine 5'-methylamides as A3 adenosine receptor (AR) agonists, we discovered µM binding hits at the δ-opioid receptor (DOR) and translocator protein (TSPO). In an effort to increase OR and decrease AR affinity by structure activity analysis of this series, antagonist activity at κ-(K)OR appeared in 5'-esters (ethyl 24 and propyl 30), which retained TSPO interaction (µM). 7-Deaza modification of C2-(arylethynyl)-5'-esters but not 4'-truncation enhanced KOR affinity (MRS7299 28 and 29, K i ≈ 40 nM), revealed µ-OR and DOR binding, and reduced AR affinity. Molecular docking and dynamics simulations located a putative KOR binding mode consistent with the observed affinities, placing C7 in a hydrophobic region. 3-Deaza modification permitted TSPO but not OR binding, and 1-deaza was permissive to both; ribose-restored analogues were inactive at both. Thus, we have repurposed a known AR nucleoside scaffold for OR antagonism, with a detailed hypothesis for KOR recognition.

15.
Elife ; 62017 05 24.
Artículo en Inglés | MEDLINE | ID: mdl-28537555

RESUMEN

Physiological responses to nociceptive stimuli are initiated within tens of milliseconds, but the corresponding sub-second behavioral responses have not been adequately explored in awake, unrestrained animals. A detailed understanding of these responses is crucial for progress in pain neurobiology. Here, high-speed videography during nociceptive Aδ fiber stimulation demonstrated engagement of a multi-segmental motor program coincident with, or even preceding, withdrawal of the stimulated paw. The motor program included early head orientation and adjustments of the torso and un-stimulated paws. Moreover, we observed a remarkably potent gating mechanism when the animal was standing on its hindlimbs and which was partially dependent on the endogenous opioid system. These data reveal a profound, immediate and precise integration of nociceptive inputs with ongoing motor activities leading to the initiation of complex, yet behaviorally appropriate, response patterns and the mobilization of a new type of analgesic mechanism within this early temporal nociceptive window.


Asunto(s)
Adaptación Fisiológica , Locomoción , Neuronas Motoras/fisiología , Dolor Nociceptivo , Nociceptores/fisiología , Animales , Masculino , Ratas Sprague-Dawley , Grabación de Cinta de Video
16.
Chemosphere ; 167: 193-203, 2017 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-27721130

RESUMEN

The US military is developing insensitive munitions (IM) that are less sensitive to shock and high temperatures to minimize unintentional detonations. DNAN (2,4-dinitroanisole) is one of the main ingredients of these IM formulations. During live-fire training, chunks of IM formulations are scattered by partial detonations and, once on the soil, they weather and dissolve. DNAN changes color when exposed to sunlight suggesting that it photodegrades into other compounds. We investigated the photo-degradation of DNAN both as a pure solid and as part of solid IM formulations, IMX101, IMX104 and PAX21. The concentrations of degradation products found were small, <1%, relative to DNAN concentrations. We saw transient peaks in the chromatograms indicating intermediate, unstable products but we consistently found methoxy nitrophenols and methoxy nitroanilines. We also found one unknown in most of the samples and other unknowns less frequently.


Asunto(s)
Anisoles/química , Sustancias Explosivas/química , Nitrocompuestos/química , Procesos Fotoquímicos , Luz Solar , Color , Cinética
17.
Medchemcomm ; 8(8): 1659-1667, 2017 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-29250307

RESUMEN

A pyrazolo[4,3-e][1,2,4]triazolo[1,5-c]pyrimidin-5-amine antagonist of the A2A adenosine receptor (AR) was functionalized as amine congeners, fluorescent conjugates and a sulfonate, and the A2AAR binding modes were predicted computationally. The optimal n-butyl spacer was incorporated into the following A2AAR-selective (Ki, nM) conjugates: BODIPY630/650 derivative 11 (MRS7396, 24.6) and AlexaFluor488 derivative 12 (MRS7416, 30.3). Flow cytometry of 12 in hA2AAR-expressing HEK-293 cells displayed saturable binding (low nonspecific) and inhibition by known A2AAR antagonists. Water-soluble sulfonate 13 was a highly potent (Ki = 6.2 nM) and selective A2AAR antagonist based on binding and functional assays. Docking and molecular dynamics simulations predicted the regions of interaction of the distal portions of these chain-extended ligands with the A2AAR. The BODIPY630/650 fluorophore of 11 was buried in a hydrophobic interhelical (TM1/TM7) region, while AlexaFluor488 of 12 associated with the hydrophilic extracellular loops. In conclusion, we have identified novel high affinity antagonist probes for A2AAR drug discovery and characterization.

19.
Oncotarget ; 6(30): 29963-74, 2015 Oct 06.
Artículo en Inglés | MEDLINE | ID: mdl-26298773

RESUMEN

Elucidating the targets and mechanism of action of natural products is strategically important prior to drug development and assessment of potential clinical applications. In this report, we elucidated the main targets and mechanism of action of the natural product tonantzitlolone (TZL) in clear cell renal cell carcinoma (CCRCC). We identified TZL as a dual PKCα and PKCθ activator in vitro, although in CCRCC cells its activity was mostly PKCθ-dependent. Through activation of PKCθ, TZL induced an insulin resistant phenotype by inhibiting IRS1 and the PI3K/Akt pathway. Simultaneously, TZL activated the heat shock factor 1 (HSF1) transcription factor driving glucose dependency. Thus, similar to the selective PKCθ activator englerin A, TZL induces a metabolic catastrophe in CCRCC, starving cells of glucose while simultaneously increasing their glycolytic dependency.


Asunto(s)
Proteínas de Unión al ADN/metabolismo , Diterpenos/farmacología , Isoenzimas/metabolismo , Compuestos Macrocíclicos/farmacología , Proteína Quinasa C/metabolismo , Factores de Transcripción/metabolismo , Antineoplásicos/química , Antineoplásicos/farmacología , Carcinoma de Células Renales/genética , Carcinoma de Células Renales/metabolismo , Carcinoma de Células Renales/patología , Línea Celular Tumoral , Supervivencia Celular/efectos de los fármacos , Proteínas de Unión al ADN/genética , Diterpenos/química , Relación Dosis-Respuesta a Droga , Activación Enzimática/efectos de los fármacos , Glucosa/farmacología , Células HEK293 , Factores de Transcripción del Choque Térmico , Humanos , Immunoblotting , Isoenzimas/genética , Neoplasias Renales/genética , Neoplasias Renales/metabolismo , Neoplasias Renales/patología , Compuestos Macrocíclicos/química , Estructura Molecular , Fosforilación/efectos de los fármacos , Proteína Quinasa C/genética , Proteína Quinasa C-theta , Interferencia de ARN , Sesquiterpenos de Guayano/química , Sesquiterpenos de Guayano/farmacología , Factores de Transcripción/genética
20.
Cancer Cell ; 26(6): 840-850, 2014 Dec 08.
Artículo en Inglés | MEDLINE | ID: mdl-25490448

RESUMEN

Patients with germline fumarate hydratase (FH) mutation are predisposed to develop aggressive kidney cancer with few treatment options and poor therapeutic outcomes. Activity of the proto-oncogene ABL1 is upregulated in FH-deficient kidney tumors and drives a metabolic and survival signaling network necessary to cope with impaired mitochondrial function and abnormal accumulation of intracellular fumarate. Excess fumarate indirectly stimulates ABL1 activity, while restoration of wild-type FH abrogates both ABL1 activation and the cytotoxicity caused by ABL1 inhibition or knockdown. ABL1 upregulates aerobic glycolysis via the mTOR/HIF1α pathway and neutralizes fumarate-induced proteotoxic stress by promoting nuclear localization of the antioxidant response transcription factor NRF2. Our findings identify ABL1 as a pharmacologically tractable therapeutic target in glycolytically dependent, oxidatively stressed tumors.


Asunto(s)
Fumarato Hidratasa/deficiencia , Neoplasias Renales/tratamiento farmacológico , Estrés Oxidativo/efectos de los fármacos , Piperidinas/farmacología , Proteínas Proto-Oncogénicas c-abl/metabolismo , Quinazolinas/farmacología , Animales , Línea Celular Tumoral , Núcleo Celular/metabolismo , Fumaratos/metabolismo , Regulación Neoplásica de la Expresión Génica/efectos de los fármacos , Glucólisis/efectos de los fármacos , Células HEK293 , Humanos , Neoplasias Renales/patología , Ratones , Factor 2 Relacionado con NF-E2/genética , Factor 2 Relacionado con NF-E2/metabolismo , Neoplasias Experimentales , Proto-Oncogenes Mas , Proteínas Proto-Oncogénicas c-abl/genética , Transducción de Señal/efectos de los fármacos , Ensayos Antitumor por Modelo de Xenoinjerto
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA