Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
1.
Plant Biotechnol J ; 18(4): 992-1003, 2020 04.
Artículo en Inglés | MEDLINE | ID: mdl-31553830

RESUMEN

The subspecies fastigiata of cultivated groundnut lost fresh seed dormancy (FSD) during domestication and human-made selection. Groundnut varieties lacking FSD experience precocious seed germination during harvest imposing severe losses. Development of easy-to-use genetic markers enables early-generation selection in different molecular breeding approaches. In this context, one recombinant inbred lines (RIL) population (ICGV 00350 × ICGV 97045) segregating for FSD was used for deploying QTL-seq approach for identification of key genomic regions and candidate genes. Whole-genome sequencing (WGS) data (87.93 Gbp) were generated and analysed for the dormant parent (ICGV 97045) and two DNA pools (dormant and nondormant). After analysis of resequenced data from the pooled samples with dormant parent (reference genome), we calculated delta-SNP index and identified a total of 10,759 genomewide high-confidence SNPs. Two candidate genomic regions spanning 2.4 Mb and 0.74 Mb on the B05 and A09 pseudomolecules, respectively, were identified controlling FSD. Two candidate genes-RING-H2 finger protein and zeaxanthin epoxidase-were identified in these two regions, which significantly express during seed development and control abscisic acid (ABA) accumulation. QTL-seq study presented here laid out development of a marker, GMFSD1, which was validated on a diverse panel and could be used in molecular breeding to improve dormancy in groundnut.


Asunto(s)
Arachis/genética , Latencia en las Plantas/genética , Sitios de Carácter Cuantitativo , Semillas/fisiología , Arachis/fisiología , Mapeo Cromosómico , Marcadores Genéticos , Polimorfismo de Nucleótido Simple
2.
Theor Appl Genet ; 127(8): 1771-81, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24927821

RESUMEN

KEY MESSAGE: Successful introgression of a major QTL for rust resistance, through marker-assisted backcrossing, in three popular Indian peanut cultivars generated several promising introgression lines with enhanced rust resistance and higher yield. Leaf rust, caused by Puccinia arachidis Speg, is one of the major devastating diseases in peanut (Arachis hypogaea L.). One QTL region on linkage group AhXV explaining upto 82.62 % phenotypic variation for rust resistance was validated and introgressed from cultivar 'GPBD 4' into three rust susceptible varieties ('ICGV 91114', 'JL 24' and 'TAG 24') through marker-assisted backcrossing (MABC). The MABC approach employed a total of four markers including one dominant (IPAHM103) and three co-dominant (GM2079, GM1536, GM2301) markers present in the QTL region. After 2-3 backcrosses and selfing, 200 introgression lines (ILs) were developed from all the three crosses. Field evaluation identified 81 ILs with improved rust resistance. Those ILs had significantly increased pod yields (56-96 %) in infested environments compared to the susceptible parents. Screening of selected 43 promising ILs with 13 markers present on linkage group AhXV showed introgression of the target QTL region from the resistant parent in 11 ILs. Multi-location field evaluation of these ILs should lead to the release of improved varieties. The linked markers may be used in improving rust resistance in peanut breeding programmes.


Asunto(s)
Arachis/genética , Arachis/inmunología , Basidiomycota/fisiología , Resistencia a la Enfermedad/genética , Endogamia , Enfermedades de las Plantas/microbiología , Sitios de Carácter Cuantitativo/genética , Arachis/microbiología , Cruzamientos Genéticos , Ligamiento Genético , Marcadores Genéticos , Genoma de Planta/genética , Genotipo , Enfermedades de las Plantas/genética , Autofecundación
3.
Genes (Basel) ; 15(2)2024 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-38397130

RESUMEN

Peanuts (Arachis hypogaea L.) are important high-protein and oil-containing legume crops adapted to arid to semi-arid regions. The yield and quality of peanuts are complex quantitative traits that show high environmental influence. In this study, a recombinant inbred line population (RIL) (Valencia-C × JUG-03) was developed and phenotyped for nine traits under two environments. A genetic map was constructed using 1323 SNP markers spanning a map distance of 2003.13 cM. Quantitative trait loci (QTL) analysis using this genetic map and phenotyping data identified seventeen QTLs for nine traits. Intriguingly, a total of four QTLs, two each for 100-seed weight (HSW) and shelling percentage (SP), showed major and consistent effects, explaining 10.98% to 14.65% phenotypic variation. The major QTLs for HSW and SP harbored genes associated with seed and pod development such as the seed maturation protein-encoding gene, serine-threonine phosphatase gene, TIR-NBS-LRR gene, protein kinase superfamily gene, bHLH transcription factor-encoding gene, isopentyl transferase gene, ethylene-responsive transcription factor-encoding gene and cytochrome P450 superfamily gene. Additionally, the identification of 76 major epistatic QTLs, with PVE ranging from 11.63% to 72.61%, highlighted their significant role in determining the yield- and quality-related traits. The significant G × E interaction revealed the existence of the major role of the environment in determining the phenotype of yield-attributing traits. Notably, the seed maturation protein-coding gene in the vicinity of major QTLs for HSW can be further investigated to develop a diagnostic marker for HSW in peanut breeding. This study provides understanding of the genetic factor governing peanut traits and valuable insights for future breeding efforts aimed at improving yield and quality.


Asunto(s)
Arachis , Sitios de Carácter Cuantitativo , Arachis/genética , Fitomejoramiento , Mapeo Cromosómico , Fenotipo
4.
Plant Genome ; 16(4): e20361, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37408143

RESUMEN

Malnutrition is a major challenge globally, and groundnut is a highly nutritious self-pollinated legume crop blessed with ample genomic resources, including the routine deployment of genomic-assisted breeding. This study aimed to identify genomic regions and candidate genes for high iron (Fe) and zinc (Zn) content, utilizing a biparental mapping population (ICGV 00440 × ICGV 06040;). Genetic mapping and quantitative trait locus (QTL) analysis (474 mapped single-nucleotide polymorphism loci; 1536.33 cM) using 2 seasons of phenotypic data together with genotypic data identified 5 major main-effect QTLs for Fe content. These QTLs exhibited log-of-odds (LOD) scores ranging from 6.5 to 7.4, explaining phenotypic variation (PVE) ranging from 22% (qFe-Ah01) to 30.0% (qFe-Ah14). Likewise, four major main effect QTLs were identified for Zn content, with LOD score ranging from 4.4 to 6.8 and PVE ranging from 21.8% (qZn-Ah01) to 32.8% (qZn-Ah08). Interestingly, three co-localized major and main effect QTLs (qFe-Ah01, qZn-Ah03, and qFe-Ah11) were identified for both Fe and Zn contents. These genomic regions harbored key candidate genes, including zinc/iron permease transporter, bZIP transcription factor, and vacuolar iron transporter which likely play pivotal roles in the accumulation of Fe and Zn contents in seeds. The findings of this study hold potential for fine mapping and diagnostic marker development for high Fe and Zn contents in groundnut.


Asunto(s)
Fabaceae , Sitios de Carácter Cuantitativo , Zinc , Fitomejoramiento , Fabaceae/genética , Hierro
5.
Front Genet ; 14: 1128182, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37007937

RESUMEN

Seed size is not only a yield-related trait but also an important measure to determine the commercial value of groundnut in the international market. For instance, small size is preferred in oil production, whereas large-sized seeds are preferred in confectioneries. In order to identify the genomic regions associated with 100-seed weight (HSW) and shelling percentage (SHP), the recombinant inbred line (RIL) population (Chico × ICGV 02251) of 352 individuals was phenotyped for three seasons and genotyped with an Axiom_Arachis array containing 58K SNPs. A genetic map with 4199 SNP loci was constructed, spanning a map distance of 2708.36 cM. QTL analysis identified six QTLs for SHP, with three consistent QTLs on chromosomes A05, A08, and B10. Similarly, for HSW, seven QTLs located on chromosomes A01, A02, A04, A10, B05, B06, and B09 were identified. BIG SEED locus and spermidine synthase candidate genes associated with seed weight were identified in the QTL region on chromosome B09. Laccase, fibre protein, lipid transfer protein, senescence-associated protein, and disease-resistant NBS-LRR proteins were identified in the QTL regions associated with shelling percentage. The associated markers for major-effect QTLs for both traits successfully distinguished between the small- and large-seeded RILs. QTLs identified for HSW and SHP can be used for developing potential selectable markers to improve the cultivars with desired seed size and shelling percentage to meet the demands of confectionery industries.

6.
Front Plant Sci ; 14: 1182867, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-37287715

RESUMEN

Groundnut productivity and quality have been impeded by rising temperatures in semi-arid environments. Hence, understanding the effects and molecular mechanisms of heat stress tolerance will aid in tackling yield losses. In this context, a recombinant inbred line (RIL) population was developed and phenotyped for eight seasons at three locations for agronomic, phenological, and physiological traits under heat stress. A genetic map was constructed using genotyping-by-sequencing with 478 single-nucleotide polymorphism (SNP) loci spanning a map distance of 1,961.39 cM. Quantitative trait locus (QTL) analysis using phenotypic and genotypic data identified 45 major main-effect QTLs for 21 traits. Intriguingly, three QTL clusters (Cluster-1-Ah03, Cluster-2-Ah12, and Cluster-3-Ah20) harbor more than half of the major QTLs (30/45, 66.6%) for various heat tolerant traits, explaining 10.4%-38.6%, 10.6%-44.6%, and 10.1%-49.5% of phenotypic variance, respectively. Furthermore, important candidate genes encoding DHHC-type zinc finger family protein (arahy.J0Y6Y5), peptide transporter 1 (arahy.8ZMT0C), pentatricopeptide repeat-containing protein (arahy.4A4JE9), Ulp1 protease family (arahy.X568GS), Kelch repeat F-box protein (arahy.I7X4PC), FRIGIDA-like protein (arahy.0C3V8Z), and post-illumination chlorophyll fluorescence increase (arahy.92ZGJC) were the underlying three QTL clusters. The putative functions of these genes suggested their involvement in seed development, regulating plant architecture, yield, genesis and growth of plants, flowering time regulation, and photosynthesis. Our results could provide a platform for further fine mapping, gene discovery, and developing markers for genomics-assisted breeding to develop heat-tolerant groundnut varieties.

7.
Plant Genome ; : e20265, 2022 Dec 07.
Artículo en Inglés | MEDLINE | ID: mdl-36478184

RESUMEN

Seed weight in groundnut (Arachis hypogaea L.) has direct impact on yield as well as market price because of preference for bold seeds by consumers and industry, thereby making seed-size improvement as one of the most important objectives of groundnut breeding programs globally. Marker-based early generation selection can accelerate the process of breeding for developing large-seeded varieties. In this context, we deployed the quantitative trait locus-sequencing (QTL-seq) approach on a biparental mapping population (Chico × ICGV 02251) to identify candidate genes and develop markers for seed weight in groundnut. A total of 289.4-389.4 million reads sequencing data were generated from three libraries (ICGV 02251 and two extreme bulks) achieving 93.9-95.1% genome coverage and 8.34-9.29× average read depth. The analysis of sequencing data using QTL-seq pipeline identified five genomic regions (three on chromosome B06 and one each on chromosomes B08 and B09) for seed weight. Detailed analysis of above associated genomic regions detected 182 single-nucleotide polymorphisms (SNPs) in genic and intergenic regions, and 11 of these SNPs were nonsynonymous in the genomic regions of 10 candidate genes including Ulp proteases and BIG SEED locus genes. Kompetitive allele specific polymerase chain reaction (KASP) markers for 14 SNPs were developed, and four of these markers (snpAH0031, snpAH0033, snpAH0037, and snpAH0038) were successfully validated for deployment in breeding for large-seeded groundnut varieties.

8.
PLoS One ; 16(11): e0259883, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34788339

RESUMEN

Profiling the genetic composition and relationships among groundnut germplasm collections is essential for the breeding of new cultivars. The objectives of this study were to assess the genetic diversity and population structure among 100 improved groundnut genotypes using agronomic traits and high-density single nucleotide polymorphism (SNP) markers. The genotypes were evaluated for agronomic traits and drought tolerance at the International Crop Research Institute for the Semi-Arid Tropics (ICRISAT)/India across two seasons. Ninety-nine of the test genotypes were profiled with 16363 SNP markers. Pod yield per plant (PY), seed yield per plant (SY), and harvest index (HI) were significantly (p < 0.05) affected by genotype × environment interaction effects. Genotypes ICGV 07222, ICGV 06040, ICGV 01260, ICGV 15083, ICGV 10143, ICGV 03042, ICGV 06039, ICGV 14001, ICGV 11380, and ICGV 13200 ranked top in terms of pod yield under both drought-stressed and optimum conditions. PY exhibited a significant (p ≤ 0.05) correlation with SY, HI, and total biomass (TBM) under both test conditions. Based on the principal component (PC) analysis, PY, SY, HSW, shelling percentage (SHP), and HI were allocated in PC 1 and contributed to the maximum variability for yield under the two water regimes. Hence, selecting these traits could be successful for screening groundnut genotypes under drought-stressed and optimum conditions. The model-based population structure analysis grouped the studied genotypes into three sub-populations. Dendrogram for phenotypic and genotypic also grouped the studied 99 genotypes into three heterogeneous clusters. Analysis of molecular variance revealed that 98% of the total genetic variation was attributed to individuals, while only 2% of the total variance was due to variation among the subspecies. The genetic distance between the Spanish bunch and Virginia bunch types ranged from 0.11 to 0.52. The genotypes ICGV 13189, ICGV 95111, ICGV 14421, and ICGV 171007 were selected for further breeding based on their wide genetic divergence. Data presented in this study will guide groundnut cultivar development emphasizing economic traits and adaptation to water-limited agro-ecologies, including in Ethiopia.


Asunto(s)
Sequías , Polimorfismo de Nucleótido Simple , Adaptación Fisiológica , Cruzamiento , Fabaceae , Fenotipo
9.
Front Genet ; 11: 514, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32587601

RESUMEN

High oleic trait, resistance to rust and late leaf spot (LLS) are important breeding objectives in groundnut. Rust and LLS cause significant economic loss, and high oleic trait is an industry preferred trait that enhances economic returns. This study reports marker-assisted selection to introgress high oleic content, resistance to LLS and rust into Kadiri 6 (K 6), a popular cultivar. The alleles for target traits were selected using linked allele-specific, simple sequence repeats and single nucleotide polymorphic markers. The F1s (384), intercrossed F1s (441), BC1F1s (380), BC1F2s (195), and BC1F3s (343) were genotyped to obtain desired allelic combination. Sixteen plants were identified with homozygous high oleic, LLS and rust resistance alleles in BC1F2, which were advanced to BC1F3 and evaluated for disease resistance, yield governing and nutritional quality traits. Phenotyping with Near-Infrared Reflectance Spectroscopy identified three lines (BC1F3-76, BC1F3-278, and BC1F3-296) with >80% oleic acid. The identified lines exhibit high levels of resistance to LLS and rust diseases (score of 3.0-4.0) with preferred pod and kernel features. The selected lines are under yield testing trials in multi-locations for release and commercialization. The lines reported here demonstrated combining high oleic trait with resistance to LLS and rust diseases.

10.
Front Plant Sci ; 10: 1338, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31867023

RESUMEN

Foliar fungal diseases especially late leaf spot (LLS) and rust are the important production constraints across the peanut growing regions of the world. A set of 340 diverse peanut genotypes that includes accessions from gene bank of International Crops Research Institute for the Semi-Arid Tropics (ICRISAT), elite breeding lines from the breeding program, and popular cultivars were screened for LLS and rust resistance and yield traits across three locations in India under natural and artificial disease epiphytotic conditions. The study revealed significant variation among the genotypes for LLS and rust resistance at different environments. Combined analysis of variance revealed significant environment (E) and genotype × environment (G×E) interactions for both the diseases indicating differential response of genotypes in different environments. The present study reported 31 genotypes as resistant to LLS and 66 to rust across the locations at 90 DAS with maturity duration 103 to 128 days. Twenty-eight genotypes showed resistance to both the diseases across the locations, of which 19 derived from A. cardenasii, five from A. hypogaea, and four from A. villosa. Site regression and Genotype by Genotype x Environment (GGE) biplot analysis identified eight genotypes as stable for LLS, 24 for rust and 14 for pod yield under disease pressure across the environments. Best performing environment specific genotypes were also identified. Nine genotypes resistant to LLS and rust showed 77% to 120% increase in pod yield over control under disease pressure with acceptable pod and kernel features that can be used as potential parents in LLS and rust resistance breeding. Pod yield increase as a consequence of resistance offered to foliar fungal diseases suggests the possibility of considering 'foliar fungal disease resistance' as a must-have trait in all the peanut cultivars that will be released for cultivation in rainfed ecologies in Asia and Africa. The phenotypic data of the present study will be used for designing genomic selection prediction models in peanut.

11.
Front Plant Sci ; 8: 794, 2017.
Artículo en Inglés | MEDLINE | ID: mdl-28588591

RESUMEN

Enhancing seed oil content with desirable fatty acid composition is one of the most important objectives of groundnut breeding programs globally. Genomics-assisted breeding facilitates combining multiple traits faster, however, requires linked markers. In this context, we have developed two different F2 mapping populations, one for oil content (OC-population, ICGV 07368 × ICGV 06420) and another for fatty acid composition (FA-population, ICGV 06420 × SunOleic 95R). These two populations were phenotyped for respective traits and genotyped using Diversity Array Technology (DArT) and DArTseq genotyping platforms. Two genetic maps were developed with 854 (OC-population) and 1,435 (FA-population) marker loci with total map distance of 3,526 and 1,869 cM, respectively. Quantitative trait locus (QTL) analysis using genotyping and phenotyping data identified eight QTLs for oil content including two major QTLs, qOc-A10 and qOc-A02, with 22.11 and 10.37% phenotypic variance explained (PVE), respectively. For seven different fatty acids, a total of 21 QTLs with 7.6-78.6% PVE were identified and 20 of these QTLs were of major effect. Two mutant alleles, ahFAD2B and ahFAD2A, also had 18.44 and 10.78% PVE for palmitic acid, in addition to oleic (33.8 and 17.4% PVE) and linoleic (41.0 and 19.5% PVE) acids. Furthermore, four QTL clusters harboring more than three QTLs for fatty acids were identified on the three LGs. The QTLs identified in this study could be further dissected for candidate gene discovery and development of diagnostic markers for breeding improved groundnut varieties with high oil content and desirable oil quality.

12.
Front Plant Sci ; 7: 289, 2016.
Artículo en Inglés | MEDLINE | ID: mdl-27014312

RESUMEN

Groundnut, a nutrient-rich food legume, is cultivated world over. It is valued for its good quality cooking oil, energy and protein rich food, and nutrient-rich fodder. Globally, groundnut improvement programs have developed varieties to meet the preferences of farmers, traders, processors, and consumers. Enhanced yield, tolerance to biotic and abiotic stresses and quality parameters have been the target traits. Spurt in genetic information of groundnut was facilitated by development of molecular markers, genetic, and physical maps, generation of expressed sequence tags (EST), discovery of genes, and identification of quantitative trait loci (QTL) for some important biotic and abiotic stresses and quality traits. The first groundnut variety developed using marker assisted breeding (MAB) was registered in 2003. Since then, USA, China, Japan, and India have begun to use genomic tools in routine groundnut improvement programs. Introgression lines that combine foliar fungal disease resistance and early maturity were developed using MAB. Establishment of marker-trait associations (MTA) paved way to integrate genomic tools in groundnut breeding for accelerated genetic gain. Genomic Selection (GS) tools are employed to improve drought tolerance and pod yield, governed by several minor effect QTLs. Draft genome sequence and low cost genotyping tools such as genotyping by sequencing (GBS) are expected to accelerate use of genomic tools to enhance genetic gains for target traits in groundnut.

13.
Plant Sci ; 242: 203-213, 2016 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-26566838

RESUMEN

High oleate peanuts have two marketable benefits, health benefits to consumers and extended shelf life of peanut products. Two mutant alleles present on linkage group a09 (ahFAD2A) and b09 (ahFAD2B) control composition of three major fatty acids, oleic, linoleic and palmitic acids which together determine peanut oil quality. In conventional breeding, selection for fatty acid composition is delayed to advanced generations. However by using DNA markers, breeders can reject large number of plants in early generations and therefore can optimize time and resources. Here, two approaches of molecular breeding namely marker-assisted backcrossing (MABC) and marker-assisted selection (MAS) were employed to transfer two FAD2 mutant alleles from SunOleic 95R into the genetic background of ICGV 06110, ICGV 06142 and ICGV 06420. In summary, 82 MABC and 387 MAS derived introgression lines (ILs) were developed using DNA markers with elevated oleic acid varying from 62 to 83%. Oleic acid increased by 0.5-1.1 folds, with concomitant reduction of linoleic acid by 0.4-1.0 folds and palmitic acid by 0.1-0.6 folds among ILs compared to recurrent parents. Finally, high oleate ILs, 27 with high oil (53-58%), and 28 ILs with low oil content (42-50%) were selected that may be released for cultivation upon further evaluation.


Asunto(s)
Arachis/genética , Ácido Graso Desaturasas/genética , Mutación , Fitomejoramiento/métodos , Aceites de Plantas/normas , Proteínas de Plantas/genética , Alelos , Arachis/metabolismo , Cruzamientos Genéticos , Ácido Graso Desaturasas/metabolismo , Marcadores Genéticos , Genotipo , Isoenzimas/genética , Isoenzimas/metabolismo , Ácidos Linoleicos/metabolismo , Ácidos Linoleicos/normas , Ácidos Oléicos/metabolismo , Ácidos Oléicos/normas , Ácidos Palmíticos/metabolismo , Ácidos Palmíticos/normas , Aceite de Cacahuete , Aceites de Plantas/metabolismo , Proteínas de Plantas/metabolismo , Control de Calidad , Selección Artificial
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA