Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 148
Filtrar
Más filtros

País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Immunity ; 56(10): 2442-2455.e8, 2023 Oct 10.
Artículo en Inglés | MEDLINE | ID: mdl-37776849

RESUMEN

SARS-CoV-2 continues to evolve, with many variants evading clinically authorized antibodies. To isolate monoclonal antibodies (mAbs) with broadly neutralizing capacities against the virus, we screened serum samples from convalescing COVID-19 patients. We isolated two mAbs, 12-16 and 12-19, which neutralized all SARS-CoV-2 variants tested, including the XBB subvariants, and prevented infection in hamsters challenged with Omicron BA.1 intranasally. Structurally, both antibodies targeted a conserved quaternary epitope located at the interface between the N-terminal domain and subdomain 1, uncovering a site of vulnerability on SARS-CoV-2 spike. These antibodies prevented viral receptor engagement by locking the receptor-binding domain (RBD) of spike in the down conformation, revealing a mechanism of virus neutralization for non-RBD antibodies. Deep mutational scanning showed that SARS-CoV-2 could mutate to escape 12-19, but such mutations are rarely found in circulating viruses. Antibodies 12-16 and 12-19 hold promise as prophylactic agents for immunocompromised persons who do not respond robustly to COVID-19 vaccines.


Asunto(s)
COVID-19 , Glicoproteína de la Espiga del Coronavirus , Animales , Cricetinae , Humanos , Vacunas contra la COVID-19 , SARS-CoV-2 , Receptores Virales , Anticuerpos Monoclonales , Anticuerpos Antivirales , Anticuerpos Neutralizantes
2.
Nature ; 624(7992): 639-644, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-37871613

RESUMEN

A severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) Omicron subvariant, BA.2.86, has emerged and spread to numerous countries worldwide, raising alarm because its spike protein contains 34 additional mutations compared with its BA.2 predecessor1. We examined its antigenicity using human sera and monoclonal antibodies (mAbs). Reassuringly, BA.2.86 was no more resistant to human sera than the currently dominant XBB.1.5 and EG.5.1, indicating that the new subvariant would not have a growth advantage in this regard. Importantly, sera from people who had XBB breakthrough infection exhibited robust neutralizing activity against all viruses tested, suggesting that upcoming XBB.1.5 monovalent vaccines could confer added protection. Although BA.2.86 showed greater resistance to mAbs to subdomain 1 (SD1) and receptor-binding domain (RBD) class 2 and 3 epitopes, it was more sensitive to mAbs to class 1 and 4/1 epitopes in the 'inner face' of the RBD that is exposed only when this domain is in the 'up' position. We also identified six new spike mutations that mediate antibody resistance, including E554K that threatens SD1 mAbs in clinical development. The BA.2.86 spike also had a remarkably high receptor affinity. The ultimate trajectory of this new SARS-CoV-2 variant will soon be revealed by continuing surveillance, but its worldwide spread is worrisome.


Asunto(s)
Epítopos de Linfocito B , Receptores Virales , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus , Humanos , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Epítopos de Linfocito B/inmunología , Inmunogenicidad Vacunal , Mutación , Receptores Virales/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , SARS-CoV-2/metabolismo , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo , Sueros Inmunes/inmunología
3.
Nature ; 608(7923): 603-608, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35790190

RESUMEN

SARS-CoV-2 Omicron subvariants BA.2.12.1 and BA.4/5 have surged notably to become dominant in the United States and South Africa, respectively1,2. These new subvariants carrying further mutations in their spike proteins raise concerns that they may further evade neutralizing antibodies, thereby further compromising the efficacy of COVID-19 vaccines and therapeutic monoclonals. We now report findings from a systematic antigenic analysis of these surging Omicron subvariants. BA.2.12.1 is only modestly (1.8-fold) more resistant to sera from vaccinated and boosted individuals than BA.2. However, BA.4/5 is substantially (4.2-fold) more resistant and thus more likely to lead to vaccine breakthrough infections. Mutation at spike residue L452 found in both BA.2.12.1 and BA.4/5 facilitates escape from some antibodies directed to the so-called class 2 and 3 regions of the receptor-binding domain3. The F486V mutation found in BA.4/5 facilitates escape from certain class 1 and 2 antibodies but compromises the spike affinity for the viral receptor. The R493Q reversion mutation, however, restores receptor affinity and consequently the fitness of BA.4/5. Among therapeutic antibodies authorized for clinical use, only bebtelovimab retains full potency against both BA.2.12.1 and BA.4/5. The Omicron lineage of SARS-CoV-2 continues to evolve, successively yielding subvariants that are not only more transmissible but also more evasive to antibodies.


Asunto(s)
Anticuerpos Antivirales , Deriva y Cambio Antigénico , COVID-19 , Mutación , SARS-CoV-2 , Anticuerpos Neutralizantes/inmunología , Anticuerpos Neutralizantes/uso terapéutico , Anticuerpos Antivirales/inmunología , Anticuerpos Antivirales/uso terapéutico , Deriva y Cambio Antigénico/genética , Deriva y Cambio Antigénico/inmunología , COVID-19/inmunología , COVID-19/virología , Vacunas contra la COVID-19/inmunología , Humanos , Inmunización Secundaria , Receptores Virales/metabolismo , SARS-CoV-2/clasificación , SARS-CoV-2/genética , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología , Glicoproteína de la Espiga del Coronavirus/metabolismo
4.
Nature ; 602(7898): 676-681, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-35016198

RESUMEN

The B.1.1.529/Omicron variant of SARS-CoV-2 was only recently detected in southern Africa, but its subsequent spread has been extensive, both regionally and globally1. It is expected to become dominant in the coming weeks2, probably due to enhanced transmissibility. A striking feature of this variant is the large number of spike mutations3 that pose a threat to the efficacy of current COVID-19 vaccines and antibody therapies4. This concern is amplified by the findings of our study. Here we found that B.1.1.529 is markedly resistant to neutralization by serum not only from patients who recovered from COVID-19, but also from individuals who were vaccinated with one of the four widely used COVID-19 vaccines. Even serum from individuals who were vaccinated and received a booster dose of mRNA-based vaccines exhibited substantially diminished neutralizing activity against B.1.1.529. By evaluating a panel of monoclonal antibodies against all known epitope clusters on the spike protein, we noted that the activity of 17 out of the 19 antibodies tested were either abolished or impaired, including ones that are currently authorized or approved for use in patients. Moreover, we also identified four new spike mutations (S371L, N440K, G446S and Q493R) that confer greater antibody resistance on B.1.1.529. The Omicron variant presents a serious threat to many existing COVID-19 vaccines and therapies, compelling the development of new interventions that anticipate the evolutionary trajectory of SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , COVID-19/virología , Evasión Inmune/inmunología , SARS-CoV-2/inmunología , Anticuerpos Monoclonales/inmunología , Anticuerpos Neutralizantes/sangre , Anticuerpos Antivirales/sangre , COVID-19/sangre , COVID-19/inmunología , Vacunas contra la COVID-19/administración & dosificación , Vacunas contra la COVID-19/inmunología , Línea Celular , Convalecencia , Evolución Molecular , Humanos , Sueros Inmunes/inmunología , Concentración 50 Inhibidora , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/clasificación , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Glicoproteína de la Espiga del Coronavirus/inmunología
5.
PLoS Biol ; 22(3): e3002522, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38483887

RESUMEN

Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) has affected approximately 800 million people since the start of the Coronavirus Disease 2019 (COVID-19) pandemic. Because of the high rate of mutagenesis in SARS-CoV-2, it is difficult to develop a sustainable approach for prevention and treatment. The Envelope (E) protein is highly conserved among human coronaviruses. Previous studies reported that SARS-CoV-1 E deficiency reduced viral propagation, suggesting that E inhibition might be an effective therapeutic strategy for SARS-CoV-2. Here, we report inhibitory peptides against SARS-CoV-2 E protein named iPep-SARS2-E. Leveraging E-induced alterations in proton homeostasis and NFAT/AP-1 pathway in mammalian cells, we developed screening platforms to design and optimize the peptides that bind and inhibit E protein. Using Vero-E6 cells, human-induced pluripotent stem cell-derived branching lung organoid and mouse models with SARS-CoV-2, we found that iPep-SARS2-E significantly inhibits virus egress and reduces viral cytotoxicity and propagation in vitro and in vivo. Furthermore, the peptide can be customizable for E protein of other human coronaviruses such as Middle East Respiratory Syndrome Coronavirus (MERS-CoV). The results indicate that E protein can be a potential therapeutic target for human coronaviruses.


Asunto(s)
COVID-19 , SARS-CoV-2 , Ratones , Animales , Chlorocebus aethiops , Humanos , Línea Celular , Células Vero , Péptidos/farmacología , Mamíferos
6.
Nature ; 593(7857): 130-135, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33684923

RESUMEN

The COVID-19 pandemic has had widespread effects across the globe, and its causative agent, SARS-CoV-2, continues to spread. Effective interventions need to be developed to end this pandemic. Single and combination therapies with monoclonal antibodies have received emergency use authorization1-3, and more treatments are under development4-7. Furthermore, multiple vaccine constructs have shown promise8, including two that have an approximately 95% protective efficacy against COVID-199,10. However, these interventions were directed against the initial SARS-CoV-2 virus that emerged in 2019. The recent detection of SARS-CoV-2 variants B.1.1.7 in the UK11 and B.1.351 in South Africa12 is of concern because of their purported ease of transmission and extensive mutations in the spike protein. Here we show that B.1.1.7 is refractory to neutralization by most monoclonal antibodies against the N-terminal domain of the spike protein and is relatively resistant to a few monoclonal antibodies against the receptor-binding domain. It is not more resistant to plasma from individuals who have recovered from COVID-19 or sera from individuals who have been vaccinated against SARS-CoV-2. The B.1.351 variant is not only refractory to neutralization by most monoclonal antibodies against the N-terminal domain but also by multiple individual monoclonal antibodies against the receptor-binding motif of the receptor-binding domain, which is mostly due to a mutation causing an E484K substitution. Moreover, compared to wild-type SARS-CoV-2, B.1.351 is markedly more resistant to neutralization by convalescent plasma (9.4-fold) and sera from individuals who have been vaccinated (10.3-12.4-fold). B.1.351 and emergent variants13,14 with similar mutations in the spike protein present new challenges for monoclonal antibody therapies and threaten the protective efficacy of current vaccines.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Vacunas contra la COVID-19/inmunología , COVID-19/inmunología , COVID-19/terapia , Evasión Inmune/inmunología , SARS-CoV-2/inmunología , Glicoproteína de la Espiga del Coronavirus/inmunología , Adulto , Anciano , Animales , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/uso terapéutico , COVID-19/prevención & control , COVID-19/virología , Chlorocebus aethiops , Farmacorresistencia Viral/inmunología , Células HEK293 , Humanos , Evasión Inmune/genética , Inmunización Pasiva , Persona de Mediana Edad , Modelos Moleculares , Mutación , Pruebas de Neutralización , Dominios Proteicos/inmunología , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/genética , Vacunas Sintéticas/inmunología , Células Vero , Sueroterapia para COVID-19 , Tratamiento Farmacológico de COVID-19 , Vacunas de ARNm
7.
Nature ; 595(7866): 278-282, 2021 07.
Artículo en Inglés | MEDLINE | ID: mdl-34098567

RESUMEN

Since the start of the COVID-19 pandemic, SARS-CoV-2 has caused millions of deaths worldwide. Although a number of vaccines have been deployed, the continual evolution of the receptor-binding domain (RBD) of the virus has challenged their efficacy. In particular, the emerging variants B.1.1.7, B.1.351 and P.1 (first detected in the UK, South Africa and Brazil, respectively) have compromised the efficacy of sera from patients who have recovered from COVID-19 and immunotherapies that have received emergency use authorization1-3. One potential alternative to avert viral escape is the use of camelid VHHs (variable heavy chain domains of heavy chain antibody (also known as nanobodies)), which can recognize epitopes that are often inaccessible to conventional antibodies4. Here, we isolate anti-RBD nanobodies from llamas and from mice that we engineered to produce VHHs cloned from alpacas, dromedaries and Bactrian camels. We identified two groups of highly neutralizing nanobodies. Group 1 circumvents antigenic drift by recognizing an RBD region that is highly conserved in coronaviruses but rarely targeted by human antibodies. Group 2 is almost exclusively focused to the RBD-ACE2 interface and does not neutralize SARS-CoV-2 variants that carry E484K or N501Y substitutions. However, nanobodies in group 2 retain full neutralization activity against these variants when expressed as homotrimers, and-to our knowledge-rival the most potent antibodies against SARS-CoV-2 that have been produced to date. These findings suggest that multivalent nanobodies overcome SARS-CoV-2 mutations through two separate mechanisms: enhanced avidity for the ACE2-binding domain and recognition of conserved epitopes that are largely inaccessible to human antibodies. Therefore, although new SARS-CoV-2 mutants will continue to emerge, nanobodies represent promising tools to prevent COVID-19 mortality when vaccines are compromised.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Camélidos del Nuevo Mundo/inmunología , SARS-CoV-2/inmunología , Anticuerpos de Dominio Único/química , Anticuerpos de Dominio Único/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/genética , Anticuerpos Neutralizantes/aislamiento & purificación , Sistemas CRISPR-Cas , Camélidos del Nuevo Mundo/genética , Femenino , Edición Génica , Humanos , Masculino , Ratones , Ratones Endogámicos C57BL , Modelos Moleculares , Mutación , Pruebas de Neutralización , SARS-CoV-2/química , SARS-CoV-2/genética , Anticuerpos de Dominio Único/genética , Anticuerpos de Dominio Único/aislamiento & purificación , Hipermutación Somática de Inmunoglobulina/genética
8.
Nature ; 584(7821): 450-456, 2020 08.
Artículo en Inglés | MEDLINE | ID: mdl-32698192

RESUMEN

The severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2) pandemic continues, with devasting consequences for human lives and the global economy1,2. The discovery and development of virus-neutralizing monoclonal antibodies could be one approach to treat or prevent infection by this coronavirus. Here we report the isolation of sixty-one SARS-CoV-2-neutralizing monoclonal antibodies from five patients infected with SARS-CoV-2 and admitted to hospital with severe coronavirus disease 2019 (COVID-19). Among these are nineteen antibodies that potently neutralized authentic SARS-CoV-2 in vitro, nine of which exhibited very high potency, with 50% virus-inhibitory concentrations of 0.7 to 9 ng ml-1. Epitope mapping showed that this collection of nineteen antibodies was about equally divided between those directed against the receptor-binding domain (RBD) and those directed against the N-terminal domain (NTD), indicating that both of these regions at the top of the viral spike are immunogenic. In addition, two other powerful neutralizing antibodies recognized quaternary epitopes that overlap with the domains at the top of the spike. Cryo-electron microscopy reconstructions of one antibody that targets the RBD, a second that targets the NTD, and a third that bridges two separate RBDs showed that the antibodies recognize the closed, 'all RBD-down' conformation of the spike. Several of these monoclonal antibodies are promising candidates for clinical development as potential therapeutic and/or prophylactic agents against SARS-CoV-2.


Asunto(s)
Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/inmunología , Betacoronavirus/inmunología , Infecciones por Coronavirus/inmunología , Epítopos de Linfocito B/inmunología , Neumonía Viral/inmunología , Glicoproteína de la Espiga del Coronavirus/química , Glicoproteína de la Espiga del Coronavirus/inmunología , Animales , Anticuerpos Monoclonales/análisis , Anticuerpos Monoclonales/química , Anticuerpos Monoclonales/inmunología , Anticuerpos Monoclonales/ultraestructura , Anticuerpos Neutralizantes/análisis , Anticuerpos Neutralizantes/química , Anticuerpos Neutralizantes/ultraestructura , Anticuerpos Antivirales/análisis , Anticuerpos Antivirales/química , Anticuerpos Antivirales/ultraestructura , Betacoronavirus/química , Betacoronavirus/ultraestructura , COVID-19 , Infecciones por Coronavirus/prevención & control , Microscopía por Crioelectrón , Modelos Animales de Enfermedad , Mapeo Epitopo , Epítopos de Linfocito B/química , Epítopos de Linfocito B/ultraestructura , Femenino , Humanos , Fragmentos Fab de Inmunoglobulinas/química , Fragmentos Fab de Inmunoglobulinas/inmunología , Fragmentos Fab de Inmunoglobulinas/ultraestructura , Pulmón/patología , Pulmón/virología , Masculino , Mesocricetus , Modelos Moleculares , Pruebas de Neutralización , Pandemias/prevención & control , Neumonía Viral/prevención & control , SARS-CoV-2 , Glicoproteína de la Espiga del Coronavirus/ultraestructura
9.
J Infect Dis ; 2024 Aug 12.
Artículo en Inglés | MEDLINE | ID: mdl-39132824

RESUMEN

Reports have described SARS-CoV-2 rebound in COVID-19 patients treated with nirmatrelvir, a 3CL protease inhibitor. The cause remains a mystery, although drug resistance, re-infection, and lack of adequate immune responses have been excluded. We now present virologic findings that provide a clue to the cause of viral rebound, which occurs in ∼20% of the treated cases. Persistence of infectious SARS-CoV-2 was experimentally documented in vitro after treatment with nirmatrelvir or another 3CL protease inhibitor, but not with a polymerase inhibitor, remdesivir. This infectious form decayed slowly with a half-life of ∼1 day, suggesting that its persistence could outlive the treatment course to re-ignite SARS-CoV-2 infection as the drug is eliminated. Notably, extending nirmatrelvir treatment beyond 8 days abolished viral rebound in vitro. Our findings point in a particular direction for future investigation of virus persistence and offer a specific treatment recommendation that should be tested clinically.

10.
Antimicrob Agents Chemother ; 68(1): e0095323, 2024 Jan 10.
Artículo en Inglés | MEDLINE | ID: mdl-38047645

RESUMEN

Molnupiravir, an oral prodrug of N-hydroxycytidine (NHC), previously demonstrated broad in vitro antiviral activity against multiple RNA viruses and has shown a high barrier to the development of resistance. Here, we present the antiviral activity of NHC against recent SARS-CoV-2 variants and the results of resistance selection studies to better understand the potential for viral resistance to NHC. NHC activity against SARS-CoV-2 variants omicron (BA.1, BA.1.1, BA.2, BA.4, BA.4.6, BA.5, BQ.1.1, XBB.1, and XBB.1.5), alpha (B.1.1.7), beta (B.1.351), gamma (P.1), delta (B.1.617.2), lambda (C.37), and mu (B.1.621) was evaluated in Vero E6 cells using cytopathic effect assays. Resistance selection studies were performed by passaging SARS-CoV-2 (WA1) in the presence of NHC or a 3C-like protease inhibitor (MRK-A) in Vero E6 cells. Supernatants from cultures exhibiting a cytopathic effect score of ≥2 were re-passaged, and IC50 values were estimated. Whole-genome deep sequencing was performed on viral RNA isolated at each passage. NHC demonstrated similar potency against all SARS-CoV-2 variants evaluated. No evidence of SARS-CoV-2 phenotypic or genotypic resistance to NHC was observed following 30 passages. A random pattern of nucleotide changes was observed in NHC cultures, consistent with the drug's mechanism of action. In contrast, resistance was readily selected in all three MRK-A control cultures with the selection of a T21I substitution in the 3C-like protease. In conclusion, molnupiravir maintains antiviral activity across all major SARS-CoV-2 variants. Furthermore, no evidence of viral resistance to NHC was observed, supporting previous reports that NHC has a high barrier to developing resistance.


Asunto(s)
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Antivirales/farmacología
11.
Proc Natl Acad Sci U S A ; 118(38)2021 09 21.
Artículo en Inglés | MEDLINE | ID: mdl-34470866

RESUMEN

Emergence of novel variants of the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) underscores the need for next-generation vaccines able to elicit broad and durable immunity. Here we report the evaluation of a ferritin nanoparticle vaccine displaying the receptor-binding domain of the SARS-CoV-2 spike protein (RFN) adjuvanted with Army Liposomal Formulation QS-21 (ALFQ). RFN vaccination of macaques using a two-dose regimen resulted in robust, predominantly Th1 CD4+ T cell responses and reciprocal peak mean serum neutralizing antibody titers of 14,000 to 21,000. Rapid control of viral replication was achieved in the upper and lower airways of animals after high-dose SARS-CoV-2 respiratory challenge, with undetectable replication within 4 d in seven of eight animals receiving 50 µg of RFN. Cross-neutralization activity against SARS-CoV-2 variant B.1.351 decreased only approximately twofold relative to WA1/2020. In addition, neutralizing, effector antibody and cellular responses targeted the heterotypic SARS-CoV-1, highlighting the broad immunogenicity of RFN-ALFQ for SARS-CoV-like Sarbecovirus vaccine development.


Asunto(s)
Vacunas contra la COVID-19/administración & dosificación , COVID-19/virología , Macaca mulatta/inmunología , Nanopartículas/química , Receptores Virales/metabolismo , SARS-CoV-2/inmunología , Adyuvantes Inmunológicos/administración & dosificación , Animales , Anticuerpos Neutralizantes/biosíntesis , Anticuerpos Neutralizantes/inmunología , Anticuerpos Antivirales/biosíntesis , Anticuerpos Antivirales/inmunología , COVID-19/prevención & control , Vacunas contra la COVID-19/inmunología , Ferritinas/química , SARS-CoV-2/metabolismo , Linfocitos T/inmunología
12.
J Minim Access Surg ; 2024 Mar 28.
Artículo en Inglés | MEDLINE | ID: mdl-38557406

RESUMEN

INTRODUCTION: Endoscopic retrograde cholangiopancreatography (ERCP) facilitates the removal of common bile duct (CBD) calculi by endoscopy. When ERCP fails, exploration of CBD is required for the clearance of CBD calculi. The optimum way for the exploration of CBD is by choledochoscopy. Dedicated flexible or rigid choledochoscopes are expensive and available only in few places in India. Since 1991, we subjected patients with suspected CBD calculi to ERCP, followed by laparoscopic cholecystectomy (LC). Patients in whom ERCP failed to clear CBD were subjected to open exploration of CBD using any easily available, suitable, straight rigid scope for choledochoscopy. PATIENTS AND METHODS: Since March 1991, out of 8866 patients with cholelithiasis, 862 underwent ERCP. Ninety-six patients in whom ERCP failed to clear CBD underwent open exploration of CBD. In each case of exploration of CBD, choledochoscopy was performed using a straight rigid scope, either a cystoscope, paediatric cystoscope, hysteroscope or 5-mm laparoscopy telescope with a 5-mm cannula. RESULTS: The CBD clearance was complete in 95 patients, and one patient had an impacted calculus at the ampulla. CBD explorations were followed by choledochoduodenostomy, T-tube placement or suturing of choledochotomy. No residual calculi were observed after such exploration. CONCLUSION: From our results, we advocate the following algorithm for CBD calculi in resource-limited settings. Subject patients with CBD calculi to ERCP followed by LC. In case of failed ERCP, open exploration of CBD with choledochoscopy using any suitable rigid scope. Dedicated flexible or rigid choledochoscope is not essential. This approach is cost-effective and successful.

13.
Molecules ; 28(2)2023 Jan 04.
Artículo en Inglés | MEDLINE | ID: mdl-36677558

RESUMEN

The present work describes the design and development of seventeen pyrimidine-clubbed benzimidazole derivatives as potential dihydrofolate reductase (DHFR) inhibitors. These compounds were filtered by using ADMET, drug-likeness characteristics calculations, and molecular docking experiments. Compounds 27, 29, 30, 33, 37, 38, and 41 were chosen for the synthesis based on the results of the in silico screening. Each of the synthesized compounds was tested for its in vitro antibacterial and antifungal activities using a variety of strains. All the compounds showed antibacterial properties against Gram-positive bacteria (Staphylococcus aureus and Staphylococcus pyogenes) as well as Gram-negative bacteria (Escherichia coli and Pseudomonas aeruginosa). Most of the compounds either had a higher potency than chloramphenicol or an equivalent potency to ciprofloxacin. Compounds 29 and 33 were effective against all the bacterial and fungal strains. Finally, the 1,2,3,4-tetrahydropyrimidine-2-thiol derivatives with a 6-chloro-2-(chloromethyl)-1H-benzo[d]imidazole moiety are potent enough to be considered a promising lead for the discovery of an effective antibacterial agent.


Asunto(s)
Antagonistas del Ácido Fólico , Antagonistas del Ácido Fólico/farmacología , Simulación del Acoplamiento Molecular , Antibacterianos/farmacología , Bencimidazoles/farmacología , Farmacorresistencia Microbiana , Pirimidinas/farmacología , Relación Estructura-Actividad , Pruebas de Sensibilidad Microbiana , Estructura Molecular
14.
J Virol ; 95(14): e0237420, 2021 06 24.
Artículo en Inglés | MEDLINE | ID: mdl-33910954

RESUMEN

We describe a mammalian cell-based assay to identify coronavirus 3CL protease (3CLpro) inhibitors. This assay is based on rescuing protease-mediated cytotoxicity and does not require live virus. By enabling the facile testing of compounds across a range of 15 distantly related coronavirus 3CLpro enzymes, we identified compounds with broad 3CLpro-inhibitory activity. We also adapted the assay for use in compound screening and in doing so uncovered additional severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) 3CLpro inhibitors. We observed strong concordance between data emerging from this assay and those obtained from live-virus testing. The reported approach democratizes the testing of 3CLpro inhibitors by developing a simplified method for identifying coronavirus 3CLpro inhibitors that can be used by the majority of laboratories, rather than the few with extensive biosafety infrastructure. We identified two lead compounds, GC376 and compound 4, with broad activity against all 3CL proteases tested, including 3CLpro enzymes from understudied zoonotic coronaviruses. IMPORTANCE Multiple coronavirus pandemics have occurred over the last 2 decades. This has highlighted a need to be proactive in the development of therapeutics that can be readily deployed in the case of future coronavirus pandemics. We developed and validated a simplified cell-based assay for the identification of chemical inhibitors of 3CL proteases encoded by a wide range of coronaviruses. This assay is reporter free, does not require specialized biocontainment, and is optimized for performance in high-throughput screening. By testing reported 3CL protease inhibitors against a large collection of 3CL proteases with variable sequence similarity, we identified compounds with broad activity against 3CL proteases and uncovered structural insights into features that contribute to their broad activity. Furthermore, we demonstrated that this assay is suitable for identifying chemical inhibitors of proteases from families other than 3CL proteases.


Asunto(s)
COVID-19/enzimología , Proteasas 3C de Coronavirus , Inhibidores de Cisteína Proteinasa , SARS-CoV-2/enzimología , Proteasas 3C de Coronavirus/antagonistas & inhibidores , Proteasas 3C de Coronavirus/química , Proteasas 3C de Coronavirus/metabolismo , Inhibidores de Cisteína Proteinasa/química , Inhibidores de Cisteína Proteinasa/farmacología , Células HEK293 , Humanos , Tratamiento Farmacológico de COVID-19
15.
Biopharm Drug Dispos ; 43(3): 98-107, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35405765

RESUMEN

The aim of this analysis was to use a physiologically based pharmacokinetic (PBPK) model to predict the impact of changes in dissolution rates on elagolix exposures and define clinically relevant acceptance criteria for dissolution. Varying in vitro dissolution profiles were utilized in a PBPK model to describe the absorption profiles of elagolix formulations used in Phase 3 clinical trials and for the to be marketed commercial formulations. Single dose studies of 200 mg elagolix formulations were used for model verification under fasted conditions. Additional dissolution scenarios were evaluated to assess the impact of dissolution rates on elagolix exposures. Compared to the Phase 3 clinical trial formulation, sensitivity analysis on dissolution rates suggested that a hypothetical scenario of ∼75% slower dissolution rate would result in 14% lower predicted elagolix plasma exposures, however, the predicted exposures are still within the bioequivalence boundaries of 0.8-1.25 for both Cmax and AUC. A clinically verified PBPK model of elagolix was utilized to evaluate the impact of wider dissolution specifications on elagolix plasma exposures. The simulation results indicated that a slower in vitro dissolution profile, would not have a clinically significant impact on elagolix exposures. These model results informed the setting of wider dissolution specifications without requiring in vivo studies.


Asunto(s)
Modelos Biológicos , Administración Oral , Ensayos Clínicos Fase III como Asunto , Simulación por Computador , Liberación de Fármacos , Hidrocarburos Fluorados , Pirimidinas , Solubilidad , Equivalencia Terapéutica
16.
Bull Environ Contam Toxicol ; 108(3): 443-450, 2022 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33837794

RESUMEN

Bioremediation itself is considered to be a cost effective soil clean-up technique and preferred over invasive physical and chemical treatments. Besides increasing efficiency, application of genetic engineering has led to reduction in the time duration required to achieve remediation, overcoming the so called 'Achilles heel' of Bioremediation. Omics technologies, namely genomics, transcriptomics, proteomics, and metabolomics, are being employed extensively to gain insights at genetic level. A wise synchronised application of these approaches can help scrutinize complex metabolic pathways, and molecular changes in response to heavy metal stress, and also its fate i.e., uptake, transport, sequestration and detoxification. In the present review, an account of some latest achievements made in the field is presented.


Asunto(s)
Genómica , Proteómica , Biodegradación Ambiental , Ingeniería Genética , Genómica/métodos , Metabolómica/métodos , Proteómica/métodos
17.
Blood Cells Mol Dis ; 88: 102535, 2021 05.
Artículo en Inglés | MEDLINE | ID: mdl-33461003

RESUMEN

Myelodysplastic Syndromes (MDS) are hematological clonal disorders. Bone marrow (BM) mesenchymal stem cells (MSCs) interact with the haematopoietic stem and progenitor cells (HSPCs) to regulate haematopoiesis. We studied the genetic variation profiles of BM derived CD34+ HSPCs and MSCs of same patient in a South Asian de novo MDS cohort with 20 patients. A total of 42 genes (variants 471) and 38 genes (variants 232) were mutated in HSPCs and MSCs respectively and majority (97%) were distinct variants. Variants included both known and novel, with variants predicted as pathogenic. In both cell types, most frequently mutated genes were TET2, KDM6A, BCOR, EZH2 and ASXL. DNA methylation and chromatin remodeling were shown to be affected in both cell types with a high frequency. RNA splicing was affected more in HSPCs. Gene variants in the cohesion complex and epigenetic mechanisms were shown to co-exist. We report variant profile of MSCs and CD34+ HSPCs from a South Asian cohort, with novel variants with potential for further study as biomarkers in MDS. Distinct variants confined to each cellular compartment indicate that the genetic variations occur following lineage commitment.


Asunto(s)
Células Madre Hematopoyéticas/metabolismo , Células Madre Mesenquimatosas/metabolismo , Mutación , Síndromes Mielodisplásicos/genética , Adulto , Anciano , Células Cultivadas , Femenino , Variación Genética , Humanos , Masculino , Persona de Mediana Edad
18.
Int J Phytoremediation ; 23(3): 279-290, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33040612

RESUMEN

This study investigates the impact of Glomus mosseae on heavy metal(loid) (HM) uptake efficiency of pea (Pisum sativum L.) plants along with physiological and biochemical parameters. Plants were grown in soil spiked with HMs (Pb and As: 50 and 100 mg kg-1; Cd: 25 and 50 mg kg-1) and a multi-metal(loid) (Mm: Pb + Cd + As) combination, inoculated/non-inoculated with G. mosseae. A dose-dependent increase in HM accumulation was observed in plants upon harvest at 60 days. Plant growth, concentration of photosynthetic pigments, total nitrogen, and carbohydrates reduced, whereas enzymatic [catalase (CAT), superoxide dismutase (SOD), and ascorbate peroxidase (APX)] and non-enzymatic (proline and total phenolics) antioxidants increased upon HM stress. Inoculation with G. mosseae led to an increase in plant growth, concentration of photosynthetic pigments, carbohydrate, nitrogen, and defence antioxidants (whereas proline decreased) which was statistically significant (p ≤ 0.05). This symbiosis can be applied for onsite remediation of Pb and Cd contaminated soil by virtue of accumulation efficiency and adaptive response of pea plants inoculated with G. mosseae. Since the amount of HMs in edible parts exceeded the maximum permissible limits recommended by FAO/WHO, pea must not be cultivated in HM-contaminated soil for agricultural purpose due to associated toxicity. Novelty statement  To our knowledge, phytoremediation potential of Pea in synchronization with Glomus mosseae has not been evaluated previously. This study highlights: • Pea-AMF symbiosis can be applied for Pb and/or Cd phytoremediation. • Target Hazard Quotient >1 for Pb, Cd and As; caution to food chain exposure required. • Nonenzymatic (proline, TPC) and enzymatic (CAT, SOD, APX) antioxidants play a key role in ROS detoxification.


Asunto(s)
Arsénico , Contaminantes del Suelo , Biodegradación Ambiental , Cadmio , Hongos , Plomo , Pisum sativum , Raíces de Plantas/química , Suelo , Contaminantes del Suelo/análisis , Simbiosis
19.
Kathmandu Univ Med J (KUMJ) ; 19(76): 429-435, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-36259184

RESUMEN

Background Anthropometric parameters of individuals are good at predicting functional impairment, mortality, and future cardiometabolic diseases. The relationship between anthropometric parameters and lipid profiles have been studied in different parts of the world. But to date, no such studies have been conducted in Nepal. Objective To investigate the association between anthropometric parameters and lipid profile in the adult population of Kaski district, Nepal. Method This study was carried out at Manipal Teaching Hospital, Pokhara, Kaski, Nepal. The fasting lipid profiles were analyzed in a total of 400 subjects aged > 18 years with an automated OCD Vitros 350 dry chemistry analyzer. The Kolmogorov-Smirnov test was used to test the normality of the data. The mean values of fasting lipids were compared within the subjects with different body mass index groups using ANOVA and waist circumference, waist-hip ratios, waist-height ratios, and neck circumference using independent samples t-test. The anthropometric indices evaluated were body mass index, waist circumference, waist-hip ratio, waist-height ratio, head circumference, neck circumference, and mid-upper arm circumference. Pearson's correlation coefficients and multiple regression analysis were performed to identify the association between the lipid profile and anthropometric parameters. The difference was considered statistically significant when p values (two-tailed) were < 0.050. Result The mean values of the serum lipid parameters other than high-density lipoprotein cholesterol were found to be higher in the subjects with an above than normal BMI, waist circumference, waist-hip ratio, waist-height ratio, and neck circumference. Pearson's correlation coefficient and multiple regression analysis showed that waistheight ratio best predicts serum triglycerides (ß=0.622, p < 0.001) and high-density lipoprotein cholesterol (ß=-0.711, p < 0.001) among all measured anthropometric parameters. Conclusion Among all the studied anthropometric parameters, the WHtR was found to be the most powerful predictor of serum triglycerides and high-density lipoprotein cholesterol.


Asunto(s)
Colesterol , Relación Cintura-Estatura , Adulto , Humanos , Nepal , Circunferencia de la Cintura , Índice de Masa Corporal , Triglicéridos , Lípidos , Lipoproteínas HDL , Factores de Riesgo
20.
Ecotoxicol Environ Saf ; 183: 109570, 2019 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-31442811

RESUMEN

A pot study was conducted to assess the phytoremediation potential of Spinach plants along with their physiological and biochemical response when grown in soil contaminated with heavy metal(loid)s (HMs). Plants were grown under different doses of Pb, Cd and As; and their metal(loid) accumulation efficiency was studied upon harvest; expressed in terms of bioabsorption coefficient (BAC), bioconcentration factor (BCF) and translocation factor (TF). Results showed significant (p ≤ 0.05) difference in physiological and biochemical mechanisms of plants as detected through decrease in concentration of cellular constituents (pigments, carbohydrates, total nitrogen content); and increase in antioxidants (both enzymatic and non-enzymatic). Despite of accumulating high amount of HMs in tissues, no visible signs of toxicity were seen; and hence the efficient survival and defense mechanism shown by spinach plants conclude that they are a viable option to be used for phytoremediation of sites contaminated with Cd and Pb. Since the content of Cd and Pb in edible part was higher than safe limits prescribed by USEPA, the present investigation also highlights the ecological hazards that may result upon cultivation of spinach in contaminated soil for agricultural purpose; or its accidental exposure to food chain when grown for phytoremediation.


Asunto(s)
Antioxidantes/metabolismo , Metaloides/toxicidad , Metales Pesados/toxicidad , Contaminantes del Suelo/toxicidad , Spinacia oleracea/efectos de los fármacos , Agricultura , Biodegradación Ambiental , Ecología , Metaloides/análisis , Metales Pesados/análisis , Suelo/química , Contaminantes del Suelo/análisis , Spinacia oleracea/crecimiento & desarrollo , Spinacia oleracea/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA