Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
Am J Hum Genet ; 109(9): 1692-1712, 2022 09 01.
Artículo en Inglés | MEDLINE | ID: mdl-36055214

RESUMEN

Leucine zipper-EF-hand containing transmembrane protein 1 (LETM1) encodes an inner mitochondrial membrane protein with an osmoregulatory function controlling mitochondrial volume and ion homeostasis. The putative association of LETM1 with a human disease was initially suggested in Wolf-Hirschhorn syndrome, a disorder that results from de novo monoallelic deletion of chromosome 4p16.3, a region encompassing LETM1. Utilizing exome sequencing and international gene-matching efforts, we have identified 18 affected individuals from 11 unrelated families harboring ultra-rare bi-allelic missense and loss-of-function LETM1 variants and clinical presentations highly suggestive of mitochondrial disease. These manifested as a spectrum of predominantly infantile-onset (14/18, 78%) and variably progressive neurological, metabolic, and dysmorphic symptoms, plus multiple organ dysfunction associated with neurodegeneration. The common features included respiratory chain complex deficiencies (100%), global developmental delay (94%), optic atrophy (83%), sensorineural hearing loss (78%), and cerebellar ataxia (78%) followed by epilepsy (67%), spasticity (53%), and myopathy (50%). Other features included bilateral cataracts (42%), cardiomyopathy (36%), and diabetes (27%). To better understand the pathogenic mechanism of the identified LETM1 variants, we performed biochemical and morphological studies on mitochondrial K+/H+ exchange activity, proteins, and shape in proband-derived fibroblasts and muscles and in Saccharomyces cerevisiae, which is an important model organism for mitochondrial osmotic regulation. Our results demonstrate that bi-allelic LETM1 variants are associated with defective mitochondrial K+ efflux, swollen mitochondrial matrix structures, and loss of important mitochondrial oxidative phosphorylation protein components, thus highlighting the implication of perturbed mitochondrial osmoregulation caused by LETM1 variants in neurological and mitochondrial pathologies.


Asunto(s)
Proteínas de Unión al Calcio , Enfermedades Mitocondriales , Proteínas de Unión al Calcio/genética , Homeostasis/genética , Humanos , Proteínas de la Membrana/genética , Mitocondrias/genética , Mitocondrias/metabolismo , Enfermedades Mitocondriales/genética , Enfermedades Mitocondriales/metabolismo , Proteínas Mitocondriales/genética , Proteínas Mitocondriales/metabolismo , Sistema Nervioso/metabolismo , Saccharomyces cerevisiae/metabolismo
2.
Am J Hum Genet ; 107(2): 311-324, 2020 08 06.
Artículo en Inglés | MEDLINE | ID: mdl-32738225

RESUMEN

Aminoacyl-tRNA synthetases (ARSs) are ubiquitous, ancient enzymes that charge amino acids to cognate tRNA molecules, the essential first step of protein translation. Here, we describe 32 individuals from 21 families, presenting with microcephaly, neurodevelopmental delay, seizures, peripheral neuropathy, and ataxia, with de novo heterozygous and bi-allelic mutations in asparaginyl-tRNA synthetase (NARS1). We demonstrate a reduction in NARS1 mRNA expression as well as in NARS1 enzyme levels and activity in both individual fibroblasts and induced neural progenitor cells (iNPCs). Molecular modeling of the recessive c.1633C>T (p.Arg545Cys) variant shows weaker spatial positioning and tRNA selectivity. We conclude that de novo and bi-allelic mutations in NARS1 are a significant cause of neurodevelopmental disease, where the mechanism for de novo variants could be toxic gain-of-function and for recessive variants, partial loss-of-function.


Asunto(s)
Aspartato-ARNt Ligasa/genética , Mutación con Ganancia de Función/genética , Mutación con Pérdida de Función/genética , Trastornos del Neurodesarrollo/genética , Aminoacil-ARN de Transferencia/genética , Alelos , Aminoacil-ARNt Sintetasas/genética , Línea Celular , Femenino , Predisposición Genética a la Enfermedad/genética , Humanos , Masculino , Linaje , ARN de Transferencia/genética , Células Madre/fisiología
3.
Mult Scler ; 29(3): 333-342, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36398585

RESUMEN

BACKGROUND: Whether genetic factors influence the long-term course of multiple sclerosis (MS) is unresolved. OBJECTIVE: To determine the influence of HLA-DRB1*1501 on long-term disease course in a homogeneous cohort of clinically isolated syndrome (CIS) patients. METHODS: One hundred seven patients underwent clinical and MRI assessment at the time of CIS and after 1, 3, 5 and 15 years. HLA-DRB1*1501 status was determined using Sanger sequencing and tagging of the rs3135388 polymorphism. Linear/Poisson mixed-effects models were used to investigate rates of change in EDSS and MRI measures based on HLA-DRB1*1501 status. RESULTS: HLA-DRB1*1501 -positive (n = 52) patients showed a faster rate of disability worsening compared with the HLA-DRB1*1501 -negative (n = 55) patients (annualised change in EDSS 0.14/year vs. 0.08/year, p < 0.025), and a greater annualised change in T2 lesion volume (adjusted difference 0.45 mL/year, p < 0.025), a higher number of gadolinium-enhancing lesions, and a faster rate of brain (adjusted difference -0.12%/year, p < 0.05) and spinal cord atrophy (adjusted difference -0.22 mm2/year, p < 0.05). INTERPRETATION: These findings provide evidence that the HLA-DRB1*1501 allele plays a role in MS severity, as measured by long-term disability worsening and a greater extent of inflammatory disease activity and tissue loss. HLA-DRB1*1501 may provide useful information when considering prognosis and treatment decisions in early relapse-onset MS.


Asunto(s)
Enfermedades Desmielinizantes , Esclerosis Múltiple , Humanos , Esclerosis Múltiple/patología , Cadenas HLA-DRB1/genética , Recurrencia Local de Neoplasia , Imagen por Resonancia Magnética , Enfermedad Crónica , Predisposición Genética a la Enfermedad
4.
Am J Hum Genet ; 103(3): 431-439, 2018 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-30100084

RESUMEN

ADP-ribosylation, the addition of poly-ADP ribose (PAR) onto proteins, is a response signal to cellular challenges, such as excitotoxicity or oxidative stress. This process is catalyzed by a group of enzymes referred to as poly(ADP-ribose) polymerases (PARPs). Because the accumulation of proteins with this modification results in cell death, its negative regulation restores cellular homeostasis: a process mediated by poly-ADP ribose glycohydrolases (PARGs) and ADP-ribosylhydrolase proteins (ARHs). Using linkage analysis and exome or genome sequencing, we identified recessive inactivating mutations in ADPRHL2 in six families. Affected individuals exhibited a pediatric-onset neurodegenerative disorder with progressive brain atrophy, developmental regression, and seizures in association with periods of stress, such as infections. Loss of the Drosophila paralog Parg showed lethality in response to oxidative challenge that was rescued by human ADPRHL2, suggesting functional conservation. Pharmacological inhibition of PARP also rescued the phenotype, suggesting the possibility of postnatal treatment for this genetic condition.

5.
Mol Biol Rep ; 48(3): 2093-2104, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33742325

RESUMEN

Mutations in nuclear-encoded protein subunits of the mitochondrial ribosome are an increasingly recognised cause of oxidative phosphorylation system (OXPHOS) disorders. Among them, mutations in the MRPL44 gene, encoding a structural protein of the large subunit of the mitochondrial ribosome, have been identified in four patients with OXPHOS defects and early-onset hypertrophic cardiomyopathy with or without additional clinical features. A 23-year-old individual with cardiac and skeletal myopathy, neurological involvement, and combined deficiency of OXPHOS complexes in skeletal muscle was clinically and genetically investigated. Analysis of whole-exome sequencing data revealed a homozygous mutation in MRPL44 (c.467 T > G), which was not present in the biological father, and a region of homozygosity involving most of chromosome 2, raising the possibility of uniparental disomy. Short-tandem repeat and genome-wide SNP microarray analyses of the family trio confirmed complete maternal uniparental isodisomy of chromosome 2. Mitochondrial ribosome assembly and mitochondrial translation were assessed in patient derived-fibroblasts. These studies confirmed that c.467 T > G affects the stability or assembly of the large subunit of the mitochondrial ribosome, leading to impaired mitochondrial protein synthesis and decreased levels of multiple OXPHOS components. This study provides evidence of complete maternal uniparental isodisomy of chromosome 2 in a patient with MRPL44-related disease, and confirms that MRLP44 mutations cause a mitochondrial translation defect that may present as a multisystem disorder with neurological involvement.


Asunto(s)
Cromosomas Humanos Par 2/genética , Enfermedades Mitocondriales/genética , Proteínas Mitocondriales/genética , Proteínas Ribosómicas/genética , Disomía Uniparental/genética , Adolescente , Secuencia de Bases , Encéfalo/diagnóstico por imagen , Encéfalo/patología , Preescolar , Femenino , Fibroblastos/patología , Homocigoto , Humanos , Lactante , Recién Nacido , Imagen por Resonancia Magnética , Enfermedades Mitocondriales/patología , Músculo Esquelético/metabolismo , Mutación/genética , Fosforilación Oxidativa , Biosíntesis de Proteínas , Adulto Joven
6.
Hum Genet ; 138(11-12): 1313-1322, 2019 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-31673819

RESUMEN

Pyruvate dehydrogenase complex (PDC) deficiency caused by mutations in the X-linked PDHA1 gene has a broad clinical presentation, and the pattern of X-chromosome inactivation has been proposed as a major factor contributing to its variable expressivity in heterozygous females. Here, we report the first set of monozygotic twin females with PDC deficiency, caused by a novel, de novo heterozygous missense mutation in exon 11 of PDHA1 (NM_000284.3: c.1100A>T). Both twins presented in infancy with a similar clinical phenotype including developmental delay, episodes of hypotonia or encephalopathy, epilepsy, and slowly progressive motor impairment due to pyramidal, extrapyramidal, and cerebellar involvement. However, they exhibited clear differences in disease severity that correlated well with residual PDC activities (approximately 60% and 20% of mean control values, respectively) and levels of immunoreactive E1α subunit in cultured skin fibroblasts. To address whether the observed clinical and biochemical differences could be explained by the pattern of X-chromosome inactivation, we undertook an androgen receptor assay in peripheral blood. In the less severely affected twin, a significant bias in the relative activity of the two X chromosomes with a ratio of approximately 75:25 was detected, while the ratio was close to 50:50 in the other twin. Although it may be difficult to extrapolate these results to other tissues, our observation provides further support to the hypothesis that the pattern of X-chromosome inactivation may influence the phenotypic expression of the same mutation in heterozygous females and broadens the clinical and genetic spectrum of PDC deficiency.


Asunto(s)
Mutación , Piruvato Deshidrogenasa (Lipoamida)/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/genética , Enfermedad por Deficiencia del Complejo Piruvato Deshidrogenasa/patología , Inactivación del Cromosoma X , Femenino , Humanos , Masculino , Linaje , Fenotipo , Pronóstico , Piruvato Deshidrogenasa (Lipoamida)/deficiencia , Gemelos Monocigóticos
8.
Hum Mutat ; 39(2): 187-192, 2018 02.
Artículo en Inglés | MEDLINE | ID: mdl-29127725

RESUMEN

We report on a homozygous frameshift deletion in DDX59 (c.185del: p.Phe62fs*13) in a family presenting with orofaciodigital syndrome phenotype associated with a broad neurological involvement characterized by microcephaly, intellectual disability, epilepsy, and white matter signal abnormalities associated with cortical and subcortical ischemic events. DDX59 encodes a DEAD-box RNA helicase and its role in brain function and neurological diseases is unclear. We showed a reduction of mutant cDNA and perturbation of SHH signaling from patient-derived cell lines; furthermore, analysis of human brain gene expression provides evidence that DDX59 is enriched in oligodendrocytes and might act within pathways of leukoencephalopathies-associated genes. We also characterized the neuronal phenotype of the Drosophila model using mutant mahe, the homolog of human DDX59, and showed that mahe loss-of-function mutant embryos exhibit impaired development of peripheral and central nervous system. Taken together, our results support a conserved role of this DEAD-box RNA helicase in neurological function.


Asunto(s)
ARN Helicasas DEAD-box/genética , Mutación/genética , ARN Helicasas/genética , Adulto , Secuencia de Aminoácidos , Animales , Sistema Nervioso Central/metabolismo , Niño , Preescolar , Drosophila/genética , Femenino , Mutación del Sistema de Lectura/genética , Homocigoto , Humanos , Masculino , Datos de Secuencia Molecular , Adulto Joven
9.
Ann Neurol ; 81(4): 597-603, 2017 04.
Artículo en Inglés | MEDLINE | ID: mdl-28253535

RESUMEN

We report 2 families with undiagnosed recessive presynaptic congenital myasthenic syndrome (CMS). Whole exome or genome sequencing identified segregating homozygous variants in VAMP1: c.51_64delAGGTGGGGGTCCCC in a Kuwaiti family and c.146G>C in an Israeli family. VAMP1 is crucial for vesicle fusion at presynaptic neuromuscular junction (NMJ). Electrodiagnostic examination showed severely low compound muscle action potentials and presynaptic impairment. We assessed the effect of the nonsense mutation on mRNA levels and evaluated the NMJ transmission in VAMP1lew/lew mice, observing neurophysiological features of presynaptic impairment, similar to the patients. Taken together, our findings highlight VAMP1 homozygous mutations as a cause of presynaptic CMS. Ann Neurol 2017;81:597-603.


Asunto(s)
Síndromes Miasténicos Congénitos/genética , Síndromes Miasténicos Congénitos/fisiopatología , Unión Neuromuscular/fisiopatología , Proteína 1 de Membrana Asociada a Vesículas/genética , Animales , Preescolar , Codón sin Sentido , Consanguinidad , Modelos Animales de Enfermedad , Femenino , Homocigoto , Humanos , Israel , Kuwait , Masculino , Ratones , Ratones Transgénicos , Linaje
10.
Mov Disord ; 33(3): 482-488, 2018 03.
Artículo en Inglés | MEDLINE | ID: mdl-29392776

RESUMEN

BACKGROUND: We investigated a family that presented with an infantile-onset chorea-predominant movement disorder, negative for NKX2-1, ADCY5, and PDE10A mutations. METHODS: Phenotypic characterization and trio whole-exome sequencing was carried out in the family. RESULTS: We identified a homozygous mutation affecting the GAF-B domain of the 3',5'-cyclic nucleotide phosphodiesterase PDE2A gene (c.1439A>G; p.Asp480Gly) as the candidate novel genetic cause of chorea in the proband. PDE2A hydrolyzes cyclic adenosine/guanosine monophosphate and is highly expressed in striatal medium spiny neurons. We functionally characterized the p.Asp480Gly mutation and found that it severely decreases the enzymatic activity of PDE2A. In addition, we showed equivalent expression in human and mouse striatum of PDE2A and its homolog gene, PDE10A. CONCLUSIONS: We identified a loss-of-function homozygous mutation in PDE2A associated to early-onset chorea. Our findings possibly strengthen the role of cyclic adenosine monophosphate and cyclic guanosine monophosphate metabolism in striatal medium spiny neurons as a crucial pathophysiological mechanism in hyperkinetic movement disorders. © 2018 The Authors. Movement Disorders published by Wiley Periodicals, Inc. on behalf of International Parkinson and Movement Disorder Society.


Asunto(s)
Corea/genética , Fosfodiesterasas de Nucleótidos Cíclicos Tipo 2/genética , Mutación/genética , Animales , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Salud de la Familia , Pruebas Genéticas , Humanos , Masculino , Hidrolasas Diéster Fosfóricas/genética , Hidrolasas Diéster Fosfóricas/metabolismo , ARN Mensajero/metabolismo
11.
Mol Cell Biochem ; 440(1-2): 147-156, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-28836047

RESUMEN

Deficiency or defective transport of riboflavin (RF) is known to cause neurological disorders, cataract, cardiovascular anomalies, and various cancers by altering the biochemical pathways. Mechanisms and regulation of RF uptake process is well characterized in the cells of intestine, liver, kidney, and brain origin, while very little is known in the heart. Hence, we aimed to understand the expression and regulation of RF transporters (rRFVT-1 and rRFVT-2) in cardiomyocytes during RF deficiency and also investigated the role of RF in ischemic cardiomyopathy and mitochondrial dysfunction in vivo. Riboflavin uptake assay revealed that RF transport in H9C2 is (1) significantly higher at pH 7.5, (2) independent of Na+ and (3) saturable with a Km of 3.746 µM. For in vivo studies, male Wistar rats (110-130 g) were provided riboflavin deficient food containing 0.3 ± 0.05 mg/kg riboflavin for 7 weeks, which resulted in over expression of both RFVTs in mRNA and protein level. RF deprivation resulted in the accumulation of cardiac biomarkers, histopathological abnormalities, and reduced mitochondrial membrane potential which evidenced the key role of RF in the development of cardiovascular pathogenesis. Besides, adaptive regulation of RF transporters upon RF deficiency signifies that RFVTs can be considered as an effective delivery system for drugs against cardiac diseases.


Asunto(s)
Miocardio/metabolismo , Miocitos Cardíacos/metabolismo , Deficiencia de Riboflavina/metabolismo , Riboflavina/metabolismo , Animales , Transporte Biológico Activo , Línea Celular , Masculino , Proteínas de Transporte de Membrana/metabolismo , Miocardio/patología , Miocitos Cardíacos/patología , Ratas , Ratas Wistar , Deficiencia de Riboflavina/patología
12.
Brain ; 140(11): 2820-2837, 2017 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-29053833

RESUMEN

Brown-Vialetto-Van Laere syndrome represents a phenotypic spectrum of motor, sensory, and cranial nerve neuropathy, often with ataxia, optic atrophy and respiratory problems leading to ventilator-dependence. Loss-of-function mutations in two riboflavin transporter genes, SLC52A2 and SLC52A3, have recently been linked to Brown-Vialetto-Van Laere syndrome. However, the genetic frequency, neuropathology and downstream consequences of riboflavin transporter mutations are unclear. By screening a large cohort of 132 patients with early-onset severe sensory, motor and cranial nerve neuropathy we confirmed the strong genetic link between riboflavin transporter mutations and Brown-Vialetto-Van Laere syndrome, identifying 22 pathogenic mutations in SLC52A2 and SLC52A3, 14 of which were novel. Brain and spinal cord neuropathological examination of two cases with SLC52A3 mutations showed classical symmetrical brainstem lesions resembling pathology seen in mitochondrial disease, including severe neuronal loss in the lower cranial nerve nuclei, anterior horns and corresponding nerves, atrophy of the spinothalamic and spinocerebellar tracts and posterior column-medial lemniscus pathways. Mitochondrial dysfunction has previously been implicated in an array of neurodegenerative disorders. Since riboflavin metabolites are critical components of the mitochondrial electron transport chain, we hypothesized that reduced riboflavin transport would result in impaired mitochondrial activity, and confirmed this using in vitro and in vivo models. Electron transport chain complex I and complex II activity were decreased in SLC52A2 patient fibroblasts, while global knockdown of the single Drosophila melanogaster riboflavin transporter homologue revealed reduced levels of riboflavin, downstream metabolites, and electron transport chain complex I activity. This in turn led to abnormal mitochondrial membrane potential, respiratory chain activity and morphology. Riboflavin transporter knockdown in Drosophila also resulted in severely impaired locomotor activity and reduced lifespan, mirroring patient pathology, and these phenotypes could be partially rescued using a novel esterified derivative of riboflavin. Our findings expand the genetic, clinical and neuropathological features of Brown-Vialetto-Van Laere syndrome, implicate mitochondrial dysfunction as a downstream consequence of riboflavin transporter gene defects, and validate riboflavin esters as a potential therapeutic strategy.


Asunto(s)
Encéfalo/patología , Parálisis Bulbar Progresiva/genética , Pérdida Auditiva Sensorineural/genética , Proteínas de Transporte de Membrana/genética , Receptores Acoplados a Proteínas G/genética , Médula Espinal/patología , Adolescente , Animales , Atrofia , Encéfalo/ultraestructura , Parálisis Bulbar Progresiva/metabolismo , Parálisis Bulbar Progresiva/patología , Niño , Preescolar , Citrato (si)-Sintasa/metabolismo , Drosophila melanogaster , Complejo I de Transporte de Electrón/metabolismo , Complejo II de Transporte de Electrones/metabolismo , Complejo III de Transporte de Electrones/metabolismo , Femenino , Fibroblastos/metabolismo , Técnicas de Silenciamiento del Gen , Pérdida Auditiva Sensorineural/metabolismo , Pérdida Auditiva Sensorineural/patología , Humanos , Técnicas In Vitro , Lactante , Locomoción/genética , Longevidad/genética , Masculino , Microscopía Electrónica , Vías Nerviosas , Riboflavina , Tractos Espinocerebelares/patología , Tractos Espinotalámicos/patología , Adulto Joven
13.
Curr Genomics ; 19(6): 412-419, 2018 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-30258273

RESUMEN

The rapid development in the last 10-15 years of microarray technologies, such as oligonucleotide array Comparative Genomic Hybridization (CGH) and Single Nucleotide Polymorphisms (SNP) genotyping array, has improved the identification of fine chromosomal structural variants, ranging in length from kilobases (kb) to megabases (Mb), as an important cause of genetic differences among healthy individuals and also as disease-susceptibility and/or disease-causing factors. Structural genomic variations due to unbalanced chromosomal rearrangements are known as Copy-Number Variants (CNVs) and these include variably sized deletions, duplications, triplications and translocations. CNVs can significantly contribute to human diseases and rearrangements in several dosage-sensitive genes have been identified as an important causative mechanism in the molecular aetiology of Charcot-Marie-Tooth (CMT) disease and of several CMT-related disorders, a group of inherited neuropathies with a broad range of clinical phenotypes, inheritance patterns and causative genes. Duplications or deletions of the dosage-sensitive gene PMP22 mapped to chromosome 17p12 represent the most frequent causes of CMT type 1A and Hereditary Neuropathy with liability to Pressure Palsies (HNPP), respectively. Additionally, CNVs have been identified in patients with other CMT types (e.g., CMT1X, CMT1B, CMT4D) and different hereditary poly- (e.g., giant axonal neuropathy) and focal- (e.g., hereditary neuralgic amyotrophy) neuropathies, supporting the notion of hereditary peripheral nerve diseases as possible genomic disorders and making crucial the identification of fine chromosomal rearrangements in the molecular assessment of such patients. Notably, the application of advanced computational tools in the analysis of Next-Generation Sequencing (NGS) data has emerged in recent years as a powerful technique for identifying a genome-wide scale complex structural variants (e.g., as the ones resulted from balanced rearrangements) and also smaller pathogenic (intragenic) CNVs that often remain beyond the detection limit of most conventional genomic microarray analyses; in the context of inherited neuropathies where more than 70 disease-causing genes have been identified to date, NGS and particularly Whole-Genome Sequencing (WGS) hold the potential to reduce the number of genomic assays required per patient to reach a diagnosis, analyzing with a single test all the Single Nucleotide Variants (SNVs) and CNVs in the genes possibly implicated in this heterogeneous group of disorders.

14.
Neurogenetics ; 18(1): 63-67, 2017 01.
Artículo en Inglés | MEDLINE | ID: mdl-28005197

RESUMEN

Biallelic mutations in the SBF1 gene have been identified in one family with demyelinating Charcot-Marie-Tooth disease (CMT4B3) and two families with axonal neuropathy and additional neurological and skeletal features. Here we describe novel sequence variants in SBF1 (c.1168C>G and c.2209_2210del) as the potential causative mutations in two siblings with severe axonal neuropathy, hearing loss, facial weakness and bulbar features. Pathogenicity of these variants is supported by co-segregation and in silico analyses and evolutionary conservation. Our findings suggest that SBF1 mutations may cause a syndromic form of autosomal recessive axonal neuropathy (AR-CMT2) in addition to CMT4B3.


Asunto(s)
Enfermedad de Charcot-Marie-Tooth/genética , Enfermedades de los Nervios Craneales/genética , Péptidos y Proteínas de Señalización Intracelular/genética , Mutación Missense , Malformaciones del Sistema Nervioso/genética , Adulto , Atrofia/genética , Axones/patología , Enfermedad de Charcot-Marie-Tooth/complicaciones , Enfermedad de Charcot-Marie-Tooth/patología , Enfermedades de los Nervios Craneales/patología , Nervios Craneales/anomalías , Nervios Craneales/patología , Genes Recesivos , Pérdida Auditiva/genética , Pérdida Auditiva/patología , Humanos , Masculino , Linaje , Hermanos
15.
Brain ; 139(Pt 7): 1904-18, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-27217339

RESUMEN

The hereditary spastic paraplegias are a heterogeneous group of degenerative disorders that are clinically classified as either pure with predominant lower limb spasticity, or complex where spastic paraplegia is complicated with additional neurological features, and are inherited in autosomal dominant, autosomal recessive or X-linked patterns. Genetic defects have been identified in over 40 different genes, with more than 70 loci in total. Complex recessive spastic paraplegias have in the past been frequently associated with mutations in SPG11 (spatacsin), ZFYVE26/SPG15, SPG7 (paraplegin) and a handful of other rare genes, but many cases remain genetically undefined. The overlap with other neurodegenerative disorders has been implied in a small number of reports, but not in larger disease series. This deficiency has been largely due to the lack of suitable high throughput techniques to investigate the genetic basis of disease, but the recent availability of next generation sequencing can facilitate the identification of disease-causing mutations even in extremely heterogeneous disorders. We investigated a series of 97 index cases with complex spastic paraplegia referred to a tertiary referral neurology centre in London for diagnosis or management. The mean age of onset was 16 years (range 3 to 39). The SPG11 gene was first analysed, revealing homozygous or compound heterozygous mutations in 30/97 (30.9%) of probands, the largest SPG11 series reported to date, and by far the most common cause of complex spastic paraplegia in the UK, with severe and progressive clinical features and other neurological manifestations, linked with magnetic resonance imaging defects. Given the high frequency of SPG11 mutations, we studied the autophagic response to starvation in eight affected SPG11 cases and control fibroblast cell lines, but in our restricted study we did not observe correlations between disease status and autophagic or lysosomal markers. In the remaining cases, next generation sequencing was carried out revealing variants in a number of other known complex spastic paraplegia genes, including five in SPG7 (5/97), four in FA2H (also known as SPG35) (4/97) and two in ZFYVE26/SPG15 Variants were identified in genes usually associated with pure spastic paraplegia and also in the Parkinson's disease-associated gene ATP13A2, neuronal ceroid lipofuscinosis gene TPP1 and the hereditary motor and sensory neuropathy DNMT1 gene, highlighting the genetic heterogeneity of spastic paraplegia. No plausible genetic cause was identified in 51% of probands, likely indicating the existence of as yet unidentified genes.


Asunto(s)
Proteínas/genética , Paraplejía Espástica Hereditaria/genética , Paraplejía Espástica Hereditaria/fisiopatología , Adolescente , Adulto , Línea Celular , Niño , Preescolar , Estudios de Cohortes , Femenino , Fibroblastos , Humanos , Masculino , Mutación , Linaje , Fenotipo , Paraplejía Espástica Hereditaria/diagnóstico por imagen , Tripeptidil Peptidasa 1 , Reino Unido , Adulto Joven
16.
Neurogenetics ; 17(4): 245-249, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27271339

RESUMEN

Episodic ataxia type 1 (EA1) is an autosomal dominant channelopathy caused by mutations in KCNA1, which encodes the voltage-gated potassium channel, Kv1.1. Eleven members of an EA family were evaluated with molecular and functional studies. A novel c.746T>G (p.Phe249Cys) missense mutation of KCNA1 segregated in the family members with episodic ataxia, myokymia, and malignant hyperthermia susceptibility. No mutations were found in the known malignant hyperthermia genes RYR1 or CACNA1S. The Phe249Cys-Kv1.1 channels did not show any currents upon functional expression, confirming a pathogenic role of the mutation. Malignant hyperthermia may be a presentation of KCNA1 mutations, which has significant implications for the clinical care of these patients and illustrates the phenotypic heterogeneity of KCNA1 mutations.


Asunto(s)
Ataxia/genética , Canal de Potasio Kv.1.1/genética , Hipertermia Maligna/genética , Mutación Missense , Adolescente , Ataxia/complicaciones , Familia , Femenino , Humanos , Canal de Potasio Kv.1.1/fisiología , Hipertermia Maligna/complicaciones , Linaje
18.
Curr Opin Neurol ; 29(5): 527-36, 2016 10.
Artículo en Inglés | MEDLINE | ID: mdl-27588584

RESUMEN

PURPOSE OF REVIEW: Neuromuscular diseases are clinically and genetically heterogeneous and probably contain the greatest proportion of causative Mendelian defects than any other group of conditions. These disorders affect muscle and/or nerves with neonatal, childhood or adulthood onset, with significant disability and early mortality. Along with heterogeneity, unidentified and often very large genes require complementary and comprehensive methods in routine molecular diagnosis. Inevitably, this leads to increased diagnostic delays and challenges in the interpretation of genetic variants. RECENT FINDINGS: The application of next-generation sequencing, as a research and diagnostic strategy, has made significant progress into solving many of these problems. The analysis of these data is by no means simple, and the clinical input is essential to interpret results. SUMMARY: In this review, we describe using examples the recent advances in the genetic diagnosis of neuromuscular disorders, in research and clinical practice and the latest developments that are underway in next-generation sequencing. We also discuss the latest collaborative initiatives such as the Genomics England (Department of Health, UK) genome sequencing project that combine rare disease clinical phenotyping with genomics, with the aim of defining the vast majority of rare disease genes in patients as well as modifying risks and pharmacogenomics factors.


Asunto(s)
Secuenciación de Nucleótidos de Alto Rendimiento , Enfermedades Neuromusculares/diagnóstico , Exoma , Genoma , Humanos , Enfermedades Neuromusculares/genética
19.
Biochemistry ; 54(21): 3320-7, 2015 Jun 02.
Artículo en Inglés | MEDLINE | ID: mdl-25961377

RESUMEN

Five-coordinate heme nitrosyl complexes (5cNO) underpin biological heme-NO signal transduction. Bacterial cytochromes c' are some of the few structurally characterized 5cNO proteins, exhibiting a distal to proximal 5cNO transition of relevance to NO sensing. Establishing how 5cNO coordination (distal vs proximal) depends on the heme environment is important for understanding this process. Recent 5cNO crystal structures of Alcaligenes xylosoxidans cytochrome c' (AXCP) and Shewanella frigidimarina cytochrome c' (SFCP) show a basic residue (Arg124 and Lys126, respectively) near the proximal NO binding sites. Using resonance Raman (RR) spectroscopy, we show that structurally characterized 5cNO complexes of AXCP variants and SFCP exhibit a range of ν(NO) (1651-1671 cm(-1)) and ν(FeNO) (519-536 cm(-1)) vibrational frequencies, depending on the nature of the proximal heme pocket and the sample temperature. While the AXCP Arg124 residue appears to have little impact on 5cNO vibrations, the ν(NO) and ν(FeNO) frequencies of the R124K variant are consistent with (electrostatically) enhanced Fe(II) → (NO)π* backbonding. Notably, RR frequencies for SFCP and R124A AXCP are significantly displaced from the backbonding trendline, which in light of recent crystallographic data and density functional theory modeling may reflect changes in the Fe-N-O angle and/or extent of σ-donation from the NO(π*) to the Fe(II) (dz(2)) orbital. For R124A AXCP, correlation of vibrational and crystallographic data is complicated by distal and proximal 5cNO populations. Overall, this study highlights the complex structure-vibrational relationships of 5cNO proteins that allow RR spectra to distinguish 5cNO coordination in certain electrostatic and steric environments.


Asunto(s)
Alcaligenes/enzimología , Citocromos c'/química , Hemo/química , Óxido Nítrico/química , Shewanella/enzimología , Espectrometría Raman , Alcaligenes/química , Modelos Moleculares , Shewanella/química
20.
J Biol Inorg Chem ; 20(4): 675-86, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25792378

RESUMEN

The cytochromes c' (CYTcp) are found in denitrifying, methanotrophic and photosynthetic bacteria. These proteins are able to form stable adducts with CO and NO but not with O2. The binding of NO to CYTcp currently provides the best structural model for the NO activation mechanism of soluble guanylate cyclase. Ligand binding in CYTcps has been shown to be highly dependent on residues in both the proximal and distal heme pockets. Group 1 CYTcps typically have a phenylalanine residue positioned close to the distal face of heme, while for group 2, this residue is typically leucine. We have structurally, spectroscopically and kinetically characterised the CYTcp from Shewanella frigidimarina (SFCP), a protein that has a distal phenylalanine residue and a lysine in the proximal pocket in place of the more common arginine. Each monomer of the SFCP dimer folds as a 4-alpha-helical bundle in a similar manner to CYTcps previously characterised. SFCP exhibits biphasic binding kinetics for both NO and CO as a result of the high level of steric hindrance from the aromatic side chain of residue Phe 16. The binding of distal ligands is thus controlled by the conformation of the phenylalanine ring. Only a proximal 5-coordinate NO adduct, confirmed by structural data, is observed with no detectable hexacoordinate distal NO adduct.


Asunto(s)
Monóxido de Carbono/química , Citocromos c'/química , Óxido Nítrico/química , Sitios de Unión , Monóxido de Carbono/metabolismo , Citocromos c'/metabolismo , Conformación Molecular , Óxido Nítrico/metabolismo , Shewanella/enzimología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA