Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Chemistry ; 30(1): e202302551, 2024 Jan 02.
Artículo en Inglés | MEDLINE | ID: mdl-37823749

RESUMEN

A new one-pot solvent-less reaction to convert benzylic, allylic, ferrocenyl or tertiary alcohols into S-thioesters, bench-stable and less odorous precursors of the corresponding thiols, which is based on reactions in neat thioacetic acid in the presence of tetrafluoroboric acid, is presented. Reaction monitoring by NMR and GC of the benzyl alcohol conversion indicated the intermediate formation of benzyl acetate and benzyl thionoacetate (PhCH2 OC(S)CH3 ) prior to the slower conversion to the final S-benzyl thioacetate product. Increasing the HBF4 concentration enhanced the reaction rate, giving good to excellent yield (up to 99 %) for a large scope of alcohols. Control experiments, with support of DFT calculations, have revealed a thermodynamically favorable, though requiring HBF4 -activation, disproportionation of CH3 C(O)SH to CH3 C(O)OH and CH3 C(S)SH, the latter immediately decomposing to H2 S and (MeC)4 S6 but also generating the hitherto unreported [MeC(O)C(Me)S]2 (µ-S)2 . Kinetic investigations demonstrated that the rate of benzyl alcohol conversion is second-order in [PhCH2 OH] and second order in [HBF4 ], while the rate of conversion of the benzyl acetate intermediate to S-benzyl thioacetate is second order in [PhCOOMe] and fourth order in [HBF4 ]. The DFT calculations rationalize the need to two alcohol molecules and two protons to generate the reactive benzyl cation.

2.
Chemistry ; 29(20): e202203712, 2023 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-36647801

RESUMEN

Thia-Michael additions (1,4-additions of a thiol to a Michael acceptor) are generally catalyzed by an external Brønsted or Lewis base. A spontaneous (uncatalyzed) Michael addition of thiols to α-trifluoromethyl acrylates is described, as well as its application to the very efficient preparation of a thermoset. A thorough mechanistic investigation, based on an experimental kinetic study and on DFT calculations, is presented for the addition of arene- and alkanethiols to tert-butyl trifluoromethyl acrylate in polar aprotic solvents, unveiling a probable solvent-assisted proton transfer in the rate-determining step and a considerable lowering of the energy barrier induced by the CF3 group.

3.
Chemistry ; 28(61): e202202058, 2022 Nov 02.
Artículo en Inglés | MEDLINE | ID: mdl-35881072

RESUMEN

Vitrimers are 3D "covalent adaptable networks" (CANs) with flow properties thanks to thermally activated associative exchange reactions. This contribution introduces coordination adaptable networks, or CooANs, that are topologically related to metal-organic frameworks with octahedral Zr6 clusters as secondary building units in a carboxylic acid-functionalized acrylate-methacrylate copolymer matrix. A series of Zr-CooAN-x materials (x=percent of Zr6 loading relative to maximum capacity) was synthesized with x=5, 10, 15, 20, 25, 50 and 100. The mechanical and rheological investigations demonstrate vitrimer-like properties for x up to 50, the crosslink migration being ensured by carboxylate ligand exchange, with relaxation becoming slower as the Zr6 content is increased. The flow activation energy of Zr-CooAN-10 is 92.9±3.6 kJ mol-1 . Rapid (30 min) hot-press reshaping occurs at temperatures in the 50-100 °C range under a 3-ton pressure and does not significantly alter the material properties.

4.
Chemistry ; 27(16): 5205-5214, 2021 Mar 17.
Artículo en Inglés | MEDLINE | ID: mdl-33325110

RESUMEN

Unimolecular amphiphilic nanoreactors with a poly(4-vinyl-N-methylpyridinium iodide) (P4VPMe+ I- ) polycationic outer shell and two different architectures (core-cross-linked micelles, CCM, and nanogels, NG), with narrow size distributions around 130-150 nm in diameter, were synthesized by RAFT polymerization from an R0 -4VPMe+ I- 140 -b-S50 -SC(S)SPr macroRAFT agent by either chain extension with a long (300 monomer units) hydrophobic polystyrene-based block followed by cross-linking with diethylene glycol dimethacrylate (DEGDMA) for the CCM particles, or by simultaneous chain extension and cross-linking for the NG particles. A core-anchored triphenylphosphine (TPP) ligand functionality was introduced by using 4-diphenylphosphinostyrene (DPPS) as a comonomer (5-20 % mol mol-1 ) in the chain extension (for CCM) or chain extension/cross-linking (for NG) step. The products were directly obtained as stable colloidal dispersions in water (latexes). After loading with [RhCl(COD)]2 to yield [RhCl(COD)(TPP@CCM)] or [RhCl(COD)(TPP@NG)], respectively, the polymers were used as polymeric nanoreactors in Rh-catalyzed aqueous biphasic hydrogenation of the model substrates styrene and 1-octene, either neat (for styrene) or in an organic solvent (toluene or 1-nonanol). All hydrogenations were rapid (TOF up to 300 h-1 ) at 25 °C and 20 bar of H2 pressure, the biphasic mixture rapidly decanted at the end of the reaction (<2 min), the Rh loss was negligible (<0.1 ppm in the recovered organic phase), and the catalyst phase could be recycled 10 times without significant loss of catalytic activity.

5.
Molecules ; 25(3)2020 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-31973221

RESUMEN

The discovery of ferrocene is often associated with the rapid growth of organometallic chemistry. Dendrimers are highly branched macromolecules that can be functionalized at will at all levels of their structure. The functionalization of dendrimers with ferrocene derivatives can be carried out easily as terminal functions on the surface, but also at the core, or at one or several layers inside the structure. This review will focus on phosphorhydrazone dendrimers functionalized with ferrocene derivatives, on the surface, at the core, at all layers or within a single layer inside the structure. The first part will describe the synthesis; the second part will concern the electrochemical properties; and the last part will give several examples concerning catalysis, with complexes of ferrocenyl phosphines used as terminal functions of dendrimers.


Asunto(s)
Dendrímeros/síntesis química , Electroquímica , Compuestos Ferrosos/síntesis química , Hidrazonas/síntesis química , Metalocenos/síntesis química , Catálisis , Dendrímeros/química , Compuestos Ferrosos/química , Hidrazonas/química , Metalocenos/química , Oxidación-Reducción
6.
J Org Chem ; 84(15): 9446-9453, 2019 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-31272149

RESUMEN

Simple and effective synthetic pathways are described to prepare compounds R2P(X)C(S)SCH(Me)Ph with the P atom either in the oxidation state V [R/X = t-Bu/O (6), Ph/S, (7), t-Bu/S (8), t-Bu/Se (9)] or III [R/X = Ph/BH3 (4), t-Bu/BH3 (5), t-Bu/lone pair (10)]. Compound 9 is the first example of carbodithioate ester with a P = Se group, and for the first time, a phosphinocarboditioate with a free phosphine function (compound 10) is described. Stabilization of the latter crucially depends on the steric protection by the t-Bu groups since an analogous derivative with R = Ph is observable but too unstable for isolation. Compound 10 can be reversibly protonated to yield the [t-Bu2PHC(S)SCH(Me)Ph]+ cation (10-H+), which was isolated as a BF4- salt. A few interconversion processes resulting in the facile addition/removal or exchange of the X group in this family of compounds are also described. The oxidation state of the phosphorus atom and the nature of an electron-withdrawing group have a significant impact on the spectral properties.

7.
J Org Chem ; 83(3): 1146-1153, 2018 02 02.
Artículo en Inglés | MEDLINE | ID: mdl-29323909

RESUMEN

A facile method for the preparation of enantiomerically pure inherently chiral calix[4]arene phosphonic acid (cR,pR)-7 in four steps starting from the readily available and previously synthesized (cS)-enantiomer of calix[4]arene acetic acid 1 or its methyl ester 2 was developed. The first tests of this unique calixarene Brönsted acid with inherent chirality in organocatalysis of the aza-Diels-Alder reaction of imines with Danishefsky's diene and epoxide ring opening by benzoic acid were performed. The calixarene phosphonic acid (cR,pR)-7 shows good catalytic activities but with low enantioselectivities in these reactions.

8.
Chemistry ; 22(18): 6302-13, 2016 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-27001452

RESUMEN

Stable latexes of hierarchically organized core-cross-linked polymer micelles that are functionalized at the core with triphenylphosphine (TPP@CCM) have been investigated by NMR spectroscopic analysis at both natural (ca. pH 5) and strongly basic (pH 13.6) pH values after core swelling with toluene. The core-shell interface structuring forces part of the hydrophilic poly(ethylene oxide) (PEO) chains to reside inside the hydrophobic core at both pH values. Loading the particle cores with [Rh(acac)(CO)2 ] (acac=acetylacetonate) at various Rh/P ratios yielded polymer-supported [Rh(acac)(CO)(TPP)] (TPP=triphenylphosphine). The particle-to-particle rhodium migration is very fast at natural pH, but slows down dramatically at high pH, whereas the size distribution of the nanoreactors remains unchanged. The slow migration at pH 13.6 leads to the generation of polymer-anchored [Rh(OH)(CO)(TPP)2 ], which is also generated immediately upon the addition of NaOH to the particles with a [Rh(acac)(CO)] loading of 50 %. Similarly, treatment of the same particles with NaCl yielded polymer-anchored [RhCl(CO)(TPP)2 ]. Interparticle coupling occurs during these rapid processes. These experiments prove that the major contribution to metal migration is direct core-core contact. The slow migration at the high pH value, however, must result from a pathway that does not involve core-core contact. The facile penetration of the polymer cores by NaOH and NaCl results from the presence of shell-linked poly(ethylene oxide) methyl ether functions both outside and inside the polymer core-shell interface.

9.
Chemistry ; 20(47): 15505-17, 2014 Nov 17.
Artículo en Inglés | MEDLINE | ID: mdl-25284685

RESUMEN

Water-borne phosphine-functionalized core-cross-linked micelles (CCM) consisting of a hydrophobic core and a hydrophilic shell were obtained as stable latexes by reversible addition-fragmentation chain transfer (RAFT) in water in a one-pot, three-step process. Initial homogeneous aqueous-phase copolymerization of methacrylic acid (MAA) and poly(ethylene oxide) methyl ether methacrylate (PEOMA) is followed by copolymerization of styrene (S) and 4-diphenylphosphinostyrene (DPPS), yielding P(MAA-co-PEOMA)-b-P(S-co-DPPS) amphiphilic block copolymer micelles (M) by polymerization-induced self-assembly (PISA), and final micellar cross-linking with a mixture of S and diethylene glycol dimethacrylate. The CCM were characterized by dynamic light scattering and NMR spectroscopy to evaluate size, dispersity, stability, and the swelling ability of various organic substrates. Coordination of [Rh(acac)(CO)2 ] (acac=acetylacetonate) to the core-confined phosphine groups was rapid and quantitative. The CCM and M latexes were then used, in combination with [Rh(acac)(CO)2 ], to catalyze the aqueous biphasic hydroformylation of 1-octene, in which they showed high activity, recyclability, protection of the activated Rh center by the polymer scaffold, and low Rh leaching. The CCM latex gave slightly lower catalytic activity but significantly less Rh leaching than the M latex. A control experiment conducted in the presence of the sulfoxantphos ligand pointed to the action of the CCM as catalytic nanoreactors with substrate and product transport into and out of the polymer core, rather than as a surfactant in interfacial catalysis.

10.
Chemistry ; 19(12): 3969-85, 2013 Mar 18.
Artículo en Inglés | MEDLINE | ID: mdl-23400876

RESUMEN

The speciation of compounds [Cp*2 M2 O5 ] (M=Mo, W; Cp*=pentamethylcyclopentadienyl) in different protic and aprotic polar solvents (methanol, dimethyl sulfoxide, acetone, acetonitrile), in the presence of variable amounts of water or acid/base, has been investigated by (1) H NMR spectrometry and electrical conductivity. Specific hypotheses suggested by the experimental results have been further probed by DFT calculations. The solvent (S)-assisted ionic dissociation to generate [Cp*MO2 (S)](+) and [Cp*MO3 ](-) takes place extensively for both metals only in water/methanol mixtures. Equilibrium amounts of the neutral hydroxido species [Cp*MO2 (OH)] are generated in the presence of water, with the relative amount increasing in the order MeCN≈acetone

11.
Chem Sci ; 14(30): 8152-8163, 2023 Aug 02.
Artículo en Inglés | MEDLINE | ID: mdl-37538814

RESUMEN

The kinetics and mechanism of the acetate ligand exchange with free acetic acid in [Zr6O4(OH)4(O2CCH3)12]2, used as a molecular model of crosslink migration in [Zr6O4(OH)4(carboxylate)12-n(OH)n]-based coordination adaptable networks with vitrimer-like properties, has been thoroughly investigated by dynamic 1H NMR and DFT calculations. The compound maintains its C2h-symmetric Zr12 structure in CD2Cl2 and C6D6, while it splits into its Zr6 subunits in CD3OD and D2O. In the Zr12 structure, the topologically different acetates (3 chelating, 6 belt-bridging, 2 intercluster-bridging and 1 inner-face-bridging) of the Zr6 subunits behave differently in the presence of free CH3COOH: very fast exchange for the chelating (coalesced resonance at room temperature), slower exchange for the belt-bridging (line broadening upon warming), no observable exchange up to 65 °C (by EXSY NMR) for the intercluster- and inner-face-bridging. The rates of the first two exchange processes have zero-order dependence on [CH3COOH]. Variable-temperature line broadening studies yielded ΔH‡ = 15.0 ± 0.4 kcal mol-1, ΔS‡ = 8 ± 1 cal mol-1 K-1 (-30 to +25 °C range in CD2Cl2) for the chelating acetates and ΔH‡ = 22.7 ± 1.6, 22.9 ± 2.1 and 20.6 ± 1.0 kcal mol-1 and ΔS‡ = 13 ± 5, 14 ± 6 and 9 ± 3 cal mol-1 K-1, respectively (+25 to +70 °C range in C6D6), for three distinct resonances of magnetically inequivalent belt-bridging acetates. With support of DFT calculations, these results point to an operationally associative mechanism involving a rate-determining partial dissociation to monodentate acetate, followed by rapid acid coordination and proton transfer. The cluster µ3-OH ligands accelerate the exchange processes through H-bonding stabilization of the coordinatively unsaturated intermediate. The lower exchange barrier for the chelated vs. bridging acetates is associated to the release of ring strain. The results presented in this investigation may help the interpretation of carboxylate exchange phenomena in other systems and the design of new carboxylate-based materials.

12.
Dalton Trans ; 52(35): 12534-12542, 2023 Sep 13.
Artículo en Inglés | MEDLINE | ID: mdl-37608708

RESUMEN

The solution behavior of complex [Rh(COD)(µ-OAc)]2 in the absence and presence of PPN+OAc- in dichloromethane has been investigated in detail by multinuclear NMR spectroscopy. Without additional acetate ions, the compound shows dynamic behavior at room temperature, consistent with an inversion of its C2v structure. Addition of PPN+OAc- reveals an equilibrated generation of [Rh(COD)(OAc)2]-. Rapid exchange is observed at room temperature between the neutral dimer and the anionic mononuclear complex, as well as between the anionic complex and free acetate. Lowering the temperature to 213 K freezes the exchange between the two Rh complexes, but fast exchange between the anionic Rh complex and free acetate maintains coalesced Me (1H and 13C) and COO (13C) NMR resonances. DFT calculations support the experimental data and lean in favour of a dissociative mechanism for the acetate exchange in [Rh(COD)(OAc)2]-. The acetate ligands in complex [Rh(COD)(µ-OAc)]2 are also exchanged in a biphasic (water/organic) system with the methacrylic acid (MAA) functions of hydrosoluble [MMA0.5-co-PEOMA0.5]30 copolymer chains (PEOMA = poly(ethylene oxide) methyl ether methacrylate), resulting in transfer of the Rh complex to the aqueous phase. Exchange with the MAA functions in the same polymer equally takes place for the chloride ligands of [Rh(COD)(µ-Cl)]2. The latter phenomenon rationalizes the coagulation of a core-crosslinked micelle (CCM) latex, where MMA functions are present on the hydrophilic CCM shell, when a dichloromethane solution of [Rh(COD)(µ-Cl)]2 is added.

13.
Dalton Trans ; 52(8): 2495-2505, 2023 Feb 21.
Artículo en Inglés | MEDLINE | ID: mdl-36727834

RESUMEN

The reaction between [IrCl(COD)]2 and dppe in a 1 : 2 ratio was investigated in detail under three different conditions. [IrCl(COD)(dppe)], 1, is formed at room temperature in the absence of base. In the presence of a strong base at room temperature, hydride complexes that retain the carbocyclic ligand in the coordination sphere are generated. In isopropanol, 1 is converted into [IrH(1,2,5,6-η2:η2-COD)(dppe)] (2) on addition of KOtBu, with k12 = (1.11 ± 0.02) × 10-4 s-1, followed by reversible isomerisation to [IrH(1-κ-4,5,6-η3-C8H12)(dppe)] (3) with k23 = (3.4 ± 0.2) × 10-4 s-1 and k32 = (1.1 ± 0.3) × 10-5 s-1 to yield an equilibrium 5 : 95 mixture of 2 and 3. However, when no hydride source is present in the strong base (KOtBu in benzene or toluene), the COD ligand in 1 is deprotonated, followed by ß-H elimination of an IrI-C8H11 intermediate, which leads to complex [IrH(1-κ-4,5,6-η3-C8H10)(dppe)] (4) selectively. This is followed by its reversible isomerisation to 5, which features a different relative orientation of the same ligands (k45 = (3.92 ± 0.11) × 10-4 s-1; k5-4 = (1.39 ± 0.12) × 10-4 s-1 in C6D6), to yield an equilibrated 32 : 68 mixture of 4 and 5. DFT calculations assisted in the full rationalization of the selectivity and mechanism of the reactions, yielding thermodynamic (equilibrium) and kinetic (isomerization barriers) parameters in excellent agreement with the experimental values. Finally, in the presence of KOtBu and isopropanol at 80 °C, 1 is transformed selectively to K[IrH4(dppe)] (6), a salt of an anionic tetrahydride complex of IrIII. This product is also selectively generated from 2, 3, 4 and 5 and H2 at room temperature, but only when a strong base is present. These results provide an insight into the catalytic action of [IrCl(COD)(LL)] complexes in the hydrogenation of polar substrates in the presence of a base.

14.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 12): m1490-1, 2012 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-23468710

RESUMEN

The title compound, [Fe(C5H5)(C21H24NPS)]I·CHCl3, is built up from a (ferrocenylmeth-yl)trimethyl-ammonium cation, a iodine anion and a chloro-form solvent mol-ecule, all residing in general positions. The N atom of the ammonium group is displaced by 1.182 (2) Šfrom the plane of the substituted cyclo-penta-dienyl (Cp) ring towards the Fe atom, whereas the C atom attached to the same Cp ring is slightly below this plane by -0.128 (2) Å. These deviations might result from weak agostic interactions between the two H atoms of the CH2 group and the Fe atom.

15.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 4): m381-2, 2012 Apr 01.
Artículo en Inglés | MEDLINE | ID: mdl-22589772

RESUMEN

2-(Diphenyl-thio-phosphino)dimethyl-amino-methyl-ferrocene is a key inter-mediate in the synthesis of various ferrocenyl ligands. During one such synthesis, the title compound, [Fe(C(5)H(5))(C(20)H(22)NPS)](C(12)H(10)PS(2)), was isolated as a by-product. It is built up by association of (2-(diphenyl-phosphino)ferrocen-yl)meth-yl)dimethyl-ammonium cations and diphenyl-phosphino dithio-ate anions. N-H⋯S, C-H⋯S and C-H⋯π inter-actions link the anions and cations. Each anion-cation pair is linked two by two through C-H⋯π inter-actions, forming pseudo dimers.

16.
Acta Crystallogr Sect E Struct Rep Online ; 68(Pt 6): m799-800, 2012 Jun 01.
Artículo en Inglés | MEDLINE | ID: mdl-22719348

RESUMEN

In the title compound, [Fe(C(20)H(21)NPS)(C(17)H(14)PS)]·CH(2)Cl(2), both cyclo-penta-dienyl (Cp) rings constituting the ferrocene unit are substituted by a sulfur-protected diphenyl-phosphine. One of the Cp ligands is additionally substituted by a dimethyl-amino-methyl group causing the chirality of the mol-ecule. Surprisingly, although the synthetic procedure yielded the title compound as a racemic mixture, the reported crystal is enanti-omerically pure with the R absolute configuration. The dimethyl-amino group is exo with respect to the Cp ring. Both diphenyl-thio-phosphine groups are trans with respect to the centroid-Fe-centroid direction. Weak intra-molecular C-H⋯S and C-H⋯π inter-actions between symmetry-related mol-ecules are observed. The contribution of the disordered solvent was removed from the refinement using SQUEEZE in PLATON [Spek (2009 ▶). Acta Cryst. D65, 148-155].

17.
Acta Crystallogr E Crystallogr Commun ; 78(Pt 7): 722-726, 2022 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-35855359

RESUMEN

As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, [Fe(C5H5)(C15H19N)]I·CH2Cl2, is described. The cation mol-ecule is built up from a ferrocene disubstituted by a tri-methyl-ammonium methyl group and a phenyl ring. The asymmetric unit contains the iodide to equilibrate the charge and a disordered di-chloro-methane solvate. The disordered model results from a roughly statistical exchange (0.6/0.4) between one Cl and one H. The packing of the structure is stabilized by weak C-H⋯X (X = I, Cl), C-H⋯π(Cp) and C-Cl⋯π(phen-yl) inter-actions, building a three-dimensional network. The cation has planar chirality with Sp (Fc) absolute configuration. The structure of the title compound is compared with related disubstituted (tri-meth-ylammonio)-methyl ferrocenes.

18.
Polymers (Basel) ; 14(22)2022 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-36433063

RESUMEN

Stable latexes containing unimolecular amphiphilic core-shell star-block polymers with a triphenylphosphine(TPP)-functionalized hydrophobic core and an outer hydrophilic shell based on anionic styrenesulfonate monomers have been synthesized in a convergent three-step strategy by reversible addition-fragmentation chain-transfer (RAFT) polymerization, loaded with [RhCl(COD)]2 and applied to the aqueous biphasic hydrogenation of styrene. When the outer shell contains sodium styrenesulfonate homopolymer blocks, treatment with a toluene solution of [RhCl(COD)]2 led to undesired polymer coagulation. Investigation of the interactions of [RhCl(COD)]2 and [RhCl(COD)(PPh3)] with smaller structural models of the polymer shell functions, namely sodium p-toluenesulfonate, sodium styrenesulfonate, and a poly(sodium styrenesulfonate) homopolymer in a biphasic toluene/water medium points to the presence of equilibrated Rh-sulfonate interactions as the cause of coagulation by inter-particle cross-linking. Modification of the hydrophilic shell to a statistical copolymer of sodium styrenesulfonate and poly(ethylene oxide) methyl ether methacrylate (PEOMA) in a 20:80 ratio allowed particle loading with the generation of core-anchored [RhCl(COD)TPP] complexes. These Rh-loaded latexes efficiently catalyze the aqueous biphasic hydrogenation of neat styrene as a benchmark reaction. The catalytic phase could be recovered and recycled, although the performances in terms of catalyst leaching and activity evolution during recycles are inferior to those of equivalent nanoreactors based on neutral or polycationic outer shells.

19.
Acta Crystallogr E Crystallogr Commun ; 77(Pt 8): 853-856, 2021 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-34422314

RESUMEN

As a follow-up to our research on the chemistry of disubstituted ferrocene derivatives, the synthesis and the structure of the title compound, 2-(di-phenyl-phosphino-thio-yl)-2-(3-oxobut-1-en-yl)ferrocene, [Fe(C5H5)(C21H18OPS)], are described. The mol-ecule is built up from a ferrocene unit disubstituted by an S-protected di-phenyl-phosphine group and by a methyl-vinyl-ketone chain. The crystal structure features weak C-H⋯O and C-H⋯S inter-actions, which build a two-dimensional network. This structure is compared to that of the related disubstituted di-phenyl-phosphino ferrocene.

20.
Nanoscale Adv ; 3(9): 2554-2566, 2021 May 04.
Artículo en Inglés | MEDLINE | ID: mdl-36134168

RESUMEN

Rhodium nanoparticles (Rh NPs) embedded in different amphiphilic core-crosslinked micelle (CCM) latexes (RhNP@CCM) have been synthesized by [RhCl(COD)(TPP@CCM)] reduction with H2 (TPP@CCM = core-anchored triphenylphosphine). The reduction rate depends on temperature, on the presence of base (NEt3) and on the P/Rh ratio. For CCMs with outer shells made of neutral P(MAA-co-PEOMA) copolymer chains (RhNP@CCM-N), the core-generated Rh NPs tend to migrate toward the hydrophilic shell and to agglomerate depending on the P/Rh ratio and core TPP density, whereas the MAA protonation state has a negligible effect. Conversely, CCMs with outer shells made of polycationic P(4VPMe+I-) chains (RhNP@CCM-C) maintain core-confined and well dispersed Rh NPs. All RhNP@CCMs were used as catalytic nanoreactors under aqueous biphasic conditions for acetophenone, styrene and 1-octene hydrogenation. Styrene was efficiently hydrogenated by all systems with high selectivity for vinyl reduction. For acetophenone, competition between benzene ring and carbonyl reduction was observed as well as a limited access to the catalytic sites when using CCM-C. Neat 1-octene was also converted, but the activity increased when the substrate was diluted in 1-nonanol, which is a better core-swelling solvent. Whereas the molecular RhI center was more active than the Rh0 NPs in 1-octene hydrogenation, the opposite trend was observed for styrene hydrogenation. Although Rh NP migration and agglomeration occurred for RhNP@CCM-N, even at high P/Rh, the NPs remained core-confined for RhNP@CCM-C, but only when toluene rather than diethyl ether was used for product extraction before recycling.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA