Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Plant Sci ; 13: 935829, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35928705

RESUMEN

The activity of extracellular phosphatases is a dynamic process controlled by both plant roots and microorganisms, which is responsible for the mineralization of soil phosphorus (P). Plants regulate the availability of soil P through the release of root mucilage and the exudation of low-molecular weight organic acids (LMWOAs). Mucilage increases soil hydraulic conductivity as well as pore connectivity, both of which are associated with increased phosphatase activity. The LMWOAs, in turn, stimulate the mineralization of soil P through their synergistic effects of acidification, chelation, and exchange reactions. This article reviews the catalytic properties of extracellular phosphatases and their interactions with the rhizosphere interfaces. We observed a biphasic effect of root metabolic products on extracellular phosphatases, which notably altered their catalytic mechanism. In accordance with the proposed conceptual framework, soil P is acquired by both plants and microorganisms in a coupled manner that is characterized by the exudation of their metabolic products. Due to inactive or reduced root exudation, plants recycle P through adsorption on the soil matrix, thereby reducing the rhizosphere phosphatase activity. The two-phase conceptual framework might assist in understanding P-acquisition (substrate turnover) and P-restoration (phosphatase adsorption by soil) in various terrestrial ecosystems.

2.
Chemosphere ; 277: 130243, 2021 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-34384172

RESUMEN

Improving phytoremediation efficiency in lead (Pb) contaminated soil through either bacterial or fungal inoculants have extensively been studied with different successes and limitations. In this study, co-application of bacteria and fungi have been investigated for development of an integrated phytoremediation system (IPS) for efficient Pb removal and restoration of soil microbial and enzymatic activities in degraded soil. For this purpose, Pb tolerant bacterial and fungal strains were firstly analyzed for antifungal and antibacterial activities through disc diffusion method. Afterwards, the co-inoculation studies were performed to investigate the effects on phytoavailability and uptake of Pb by Pelargonium hortorum through soil incubation and pot culture experiments, respectively. Results indicated significant (p < 0.05) antibacterial activity of Mucor spp. against bacterial species (Klebsiella variicola and K. quasipneumoniae). The highest significant increase in extractable Pb fraction (5.0-folds) was observed when soil was co-inoculated with Aspergillus flavus + Microbacterium paraoxydans compared to the control soil (un-inoculated soil) at 2000 mg Pb kg-1 concentration. Similarly, uptake results also indicated significantly higher Pb uptake in plants inoculated with A. flavus + M. paraoxydans. Soil microbial results indicated significant decrease in microbial health indicators and enzymatic activities with increasing Pb concentration and exposure time, as compared to control soil. A relatively severe decline was observed in soil respiration and dehydrogenase (DEH) activities by 2.8- and 2.5-folds, respectively at 2000 mg Pb kg-1 of soil. The optimized IPS was effective for restoring enzymatic activities in Pb contaminated soil and could be applied for sustainable restoration of Pb contaminated soil.


Asunto(s)
Contaminantes del Suelo , Suelo , Biodegradación Ambiental , Klebsiella , Plomo , Microbiología del Suelo , Contaminantes del Suelo/análisis
3.
Environ Sci Pollut Res Int ; 27(32): 39753-39762, 2020 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-32141003

RESUMEN

Availability of lead (Pb) in soil is a major factor controlling the phytoremediation efficiency of plants. This study was focused on investigating the plant-induced changes in rhizosphere and corresponding effect on bioavailable fraction of Pb and accumulation in different plant parts. For rhizosphere study, special cropping device was designed locally. Two Pb accumulator plants Stigmatocarpum criniflorum (L. f.) L. Bolus and Pelargonium × hortorum L.H. Bailey were grown in cropping device setup containing Pb spiked soil (500, 1000, 1500, and 2000 mg kg-1) for a period of 3 weeks. Further plants were also analyzed for Pb-induced oxidative stress. The results indicated higher ability of soil adjustment for Pb uptake by P. hortorum. The soil pH was (p < 0.05) decreased (ΔpH = - 0.22 pH), and dissolved organic carbon (DOC) content was significantly increased (by 1.7-fold) in rhizosphere of P. hortorum. The bioavailable fraction of Pb was twofold higher in rhizosphere of P. hortorum than S. criniflorum at the same soil Pb concentration (2000 mg kg-1). Maximum Pb concentration in root and shoot of S. criniflorum was 755 ± 99 and 207 ± 12 mg Pb/kg DW and for P. hortorum was 1281 ± 77 and 275 ± 7 mg Pb/kg DW. P. hortorum uptakes more Pb per plant by threefold compared with S. criniflorum. The oxidative stress results indicated higher Pb tolerance and suitability of P. hortorum for phytoextraction of Pb-contaminated soil.


Asunto(s)
Pelargonium , Contaminantes del Suelo , Biodegradación Ambiental , Plomo , Raíces de Plantas/química , Rizosfera , Suelo , Contaminantes del Suelo/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA