Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
New Phytol ; 242(6): 2604-2619, 2024 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-38563391

RESUMEN

Soil contamination with arsenic (As) can cause phytotoxicity and reduce crop yield. The mechanisms of As toxicity and tolerance are not fully understood. In this study, we used a forward genetics approach to isolate a rice mutant, ahs1, that exhibits hypersensitivity to both arsenate and arsenite. Through genomic resequencing and complementation tests, we identified OsLPD1 as the causal gene, which encodes a putative lipoamide dehydrogenase. OsLPD1 was expressed in the outer cell layer of roots, root meristem cells, and in the mesophyll and vascular tissues of leaves. Subcellular localization and immunoblot analysis demonstrated that OsLPD1 is localized in the stroma of plastids. In vitro assays showed that OsLPD1 exhibited lipoamide dehydrogenase (LPD) activity, which was strongly inhibited by arsenite, but not by arsenate. The ahs1 and OsLPD1 knockout mutants exhibited significantly reduced NADH/NAD+ and GSH/GSSG ratios, along with increased levels of reactive oxygen species and greater oxidative stress in the roots compared with wild-type (WT) plants under As treatment. Additionally, loss-of-function of OsLPD1 also resulted in decreased fatty acid concentrations in rice grain. Taken together, our finding reveals that OsLPD1 plays an important role for maintaining redox homeostasis, conferring tolerance to arsenic stress, and regulating fatty acid biosynthesis in rice.


Asunto(s)
Arsénico , Ácidos Grasos , Regulación de la Expresión Génica de las Plantas , Homeostasis , Oryza , Oxidación-Reducción , Proteínas de Plantas , Plastidios , Estrés Fisiológico , Oryza/genética , Oryza/efectos de los fármacos , Oryza/metabolismo , Homeostasis/efectos de los fármacos , Arsénico/toxicidad , Oxidación-Reducción/efectos de los fármacos , Ácidos Grasos/metabolismo , Ácidos Grasos/biosíntesis , Plastidios/metabolismo , Plastidios/efectos de los fármacos , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Estrés Fisiológico/efectos de los fármacos , Mutación/genética , Dihidrolipoamida Deshidrogenasa/metabolismo , Dihidrolipoamida Deshidrogenasa/genética , Especies Reactivas de Oxígeno/metabolismo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Adaptación Fisiológica/genética , Estrés Oxidativo/efectos de los fármacos , Arsenitos/toxicidad
2.
Yi Chuan ; 44(4): 313-321, 2022 Apr 20.
Artículo en Inglés | MEDLINE | ID: mdl-35437239

RESUMEN

Flanking genomic sequences refer to the DNA sequences flanking specific sites of known sequences in chromosome, which contain information such as candidate genes, transcriptional regulation, chromosome structure, and biosafety, and play an important role in genomics research. Flanking sequence acquisition technologies are mainly used in the cloning of regulatory sequences such as promoters and enhancers, identification of T-DNA or transposon insertion sites, chromosome walking, genome-wide gap filling, etc. It is an important means of structural genomics research and functional genomics research. It is applied in the identification of transgenic plants and animals and their safety management. With the development of molecular biology, many methods for obtaining flanking sequences have been established, including plasmid rescue, inverse PCR, ligation-mediated PCR, semi-random primer PCR, whole-genome resequencing etc. In this review, we summarize and compared different methods for acquiring flanking genomic sequence. The principles and research progress of each approach are discussed.


Asunto(s)
Genómica , Animales , Paseo de Cromosoma/métodos , Cartilla de ADN/genética , Plantas Modificadas Genéticamente/genética , Reacción en Cadena de la Polimerasa/métodos
3.
Plant Biotechnol J ; 19(3): 448-461, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-32876985

RESUMEN

Nitrogen (N) is one of the key essential macronutrients that affects rice growth and yield. Inorganic N fertilizers are excessively used to boost yield and generate serious collateral environmental pollution. Therefore, improving crop N use efficiency (NUE) is highly desirable and has been a major endeavour in crop improvement. However, only a few regulators have been identified that can be used to improve NUE in rice to date. Here we show that the rice NIN-like protein 4 (OsNLP4) significantly improves the rice NUE and yield. Field trials consistently showed that loss-of-OsNLP4 dramatically reduced yield and NUE compared with wild type under different N regimes. In contrast, the OsNLP4 overexpression lines remarkably increased yield by 30% and NUE by 47% under moderate N level compared with wild type. Transcriptomic analyses revealed that OsNLP4 orchestrates the expression of a majority of known N uptake, assimilation and signalling genes by directly binding to the nitrate-responsive cis-element in their promoters to regulate their expression. Moreover, overexpression of OsNLP4 can recover the phenotype of Arabidopsis nlp7 mutant and enhance its biomass. Our results demonstrate that OsNLP4 plays a pivotal role in rice NUE and sheds light on crop NUE improvement.


Asunto(s)
Arabidopsis , Oryza , Fertilizantes , Nitratos , Nitrógeno , Oryza/genética
4.
Plant Cell Physiol ; 59(12): 2564-2575, 2018 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-30329110

RESUMEN

Phosphate (Pi), as the main form of phosphorus that can be absorbed by plants, is one of the most limiting macro-nutrients for plants. However, the mechanism for maintaining Pi homeostasis in rice (Oryza sativa) is still not well understood. We identified a Pi-starvation-induced E3 ligase (OsPIE1) in rice. Using an in vitro self-ubiquitination assay, we determined the E3 ligase activities of OsPIE1. Using GUS staining and GFP detection, we analyzed tissue expression patterns of OsPIE1 and the subcellular localization of its encoded protein. The function of OsPIE1 in Pi homeostasis was analyzed using OsPIE1 overexpressors and ospie1 mutants. OsPIE1 was localized to the nucleus, and expressed in epidermis, exodermis and sclerenchyma layers of primary root. Under Pi-sufficient condition, overexpression of OsPIE1 upregulated the expression of OsPT2, OsPT3, OsPT10 and OsPAP21b, resulting in Pi accumulation and acid phosphatases (APases) induction in roots. OsSPX2 was strongly suppressed in OsPIE1 overexpressors. Further comparative transcriptome analysis, tissue expression patterns and genetic interaction analysis indicated that the enhancing of Pi accumulation and APase activities upon overexpression of OsPIE1 was (at least in part) caused by repression of OsSPX2. These results indicate that OsPIE1 plays an important role in maintaining Pi homeostasis in rice.


Asunto(s)
Homeostasis , Oryza/enzimología , Fosfatos/deficiencia , Proteínas de Plantas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Fosfatasa Ácida/metabolismo , Secuencia de Aminoácidos , Núcleo Celular/metabolismo , Epistasis Genética , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Especificidad de Órganos/genética , Oryza/genética , Oryza/crecimiento & desarrollo , Proteínas de Plantas/química , Proteínas de Plantas/genética , Plantas Modificadas Genéticamente , Transcriptoma
5.
Yi Chuan ; 40(8): 676-682, 2018 Aug 16.
Artículo en Zh | MEDLINE | ID: mdl-30117423

RESUMEN

The availability of T-DNA insertion sites is very important for plant functional genomics research and the screening and identification of transgenic plants. However, the present protocols for identifying T-DNA insertion sites, like reverse PCR and semi-random primer PCR, are not only complex and time-consuming, but also inefficient. In this paper, a DNA pool of three transgenic plants was sequenced by whole-genome resequencing, and four T-DNA insertion sites were identified by blasting using transgenic T-DNA sequences. After PCR and Southern blot analysis, the T-DNA insertion sites of the three transgenic plants were successfully confirmed, and one of the transgenic plants showed two insertion sites. In conclusion, this study established a simple, reliable and efficient method for obtaining T-DNA insertion sites in transgenic plants.


Asunto(s)
ADN Bacteriano/genética , Mutagénesis Insercional , Oryza/genética , Plantas Modificadas Genéticamente/genética , Secuencia de Bases , Cartilla de ADN/genética , ADN de Plantas/genética , Genoma de Planta , Reacción en Cadena de la Polimerasa , Análisis de Secuencia de ADN
6.
New Phytol ; 211(2): 658-70, 2016 07.
Artículo en Inglés | MEDLINE | ID: mdl-26918637

RESUMEN

Arsenic (As) contamination in a paddy environment can cause phytotoxicity and elevated As accumulation in rice (Oryza sativa). The mechanism of As detoxification in rice is still poorly understood. We isolated an arsenate (As(V))-sensitive mutant of rice. Genomic resequencing and complementation identified OsCLT1, encoding a CRT-like transporter, as the causal gene for the mutant phenotype. OsCLT1 is localized to the envelope membrane of plastids. The glutathione and γ-glutamylcysteine contents in roots of Osclt1 and RNA interference lines were decreased markedly compared with the wild-type (WT). The concentrations of phytochelatin PC2 in Osclt1 roots were only 32% and 12% of that in WT after As(V) and As(III) treatments, respectively. OsCLT1 mutation resulted in lower As accumulation in roots but higher As accumulation in shoots when exposed to As(V). Under As(III) treatment, Osclt1 accumulated a lower As concentration in roots but similar As concentration in shoots to WT. Further analysis showed that the reduction of As(V) to As(III) was decreased in Osclt1. Osclt1 was also hypersensitive to cadmium (Cd). These results indicate that OsCLT1 plays an important role in glutathione homeostasis, probably by mediating the export of γ-glutamylcysteine and glutathione from plastids to the cytoplasm, which in turn affects As and Cd detoxification in rice.


Asunto(s)
Adaptación Fisiológica , Arsénico/toxicidad , Glutatión/metabolismo , Homeostasis , Proteínas de Transporte de Membrana/metabolismo , Oryza/metabolismo , Oryza/fisiología , Proteínas de Plantas/metabolismo , Adaptación Fisiológica/efectos de los fármacos , Secuencia de Bases , Cadmio/toxicidad , Clonación Molecular , Dipéptidos/metabolismo , Regulación de la Expresión Génica de las Plantas , Genes de Plantas , Prueba de Complementación Genética , Proteínas de Transporte de Membrana/genética , Mutación/genética , Especificidad de Órganos/genética , Oryza/efectos de los fármacos , Oryza/genética , Fenotipo , Filogenia , Fitoquelatinas/metabolismo , Proteínas de Plantas/genética , Transporte de Proteínas , Interferencia de ARN , Fracciones Subcelulares/metabolismo
7.
Plant Cell ; 24(11): 4731-47, 2012 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-23204407

RESUMEN

Xyloglucan endohydrolase (XEH) and xyloglucan endotransglucosylase (XET) activities, encoded by xyloglucan endotransglucosylase-hydrolase (XTH) genes, are involved in cell wall extension by cutting or cutting and rejoining xyloglucan chains, respectively. However, the physiological significance of this biochemical activity remains incompletely understood. Here, we find that an XTH31 T-DNA insertion mutant, xth31, is more Al resistant than the wild type. XTH31 is bound to the plasma membrane and the encoding gene is expressed in the root elongation zone and in nascent leaves, suggesting a role in cell expansion. XTH31 transcript accumulation is strongly downregulated by Al treatment. XTH31 expression in yeast yields a protein with an in vitro XEH:XET activity ratio of >5000:1. xth31 accumulates significantly less Al in the root apex and cell wall, shows remarkably lower in vivo XET action and extractable XET activity, has a lower xyloglucan content, and exhibits slower elongation. An exogenous supply of xyloglucan significantly ameliorates Al toxicity by reducing Al accumulation in the roots, owing to the formation of an Al-xyloglucan complex in the medium, as verified by an obvious change in chemical shift of (27)Al-NMR. Taken together, the data indicate that XTH31 affects Al sensitivity by modulating cell wall xyloglucan content and Al binding capacity.


Asunto(s)
Aluminio/toxicidad , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimología , Regulación Enzimológica de la Expresión Génica , Glucanos/metabolismo , Xilanos/metabolismo , Secuencia de Aminoácidos , Arabidopsis/química , Arabidopsis/efectos de los fármacos , Arabidopsis/genética , Proteínas de Arabidopsis/genética , Pared Celular/metabolismo , Quelantes/análisis , Quelantes/metabolismo , Regulación hacia Abajo , Regulación de la Expresión Génica de las Plantas , Glucanos/análisis , Glicosiltransferasas/genética , Glicosiltransferasas/metabolismo , Mutagénesis Insercional , Especificidad de Órganos , Fenotipo , Filogenia , Hojas de la Planta/química , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Raíces de Plantas/química , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/enzimología , Raíces de Plantas/genética , Plantas Modificadas Genéticamente , Polisacáridos/análisis , Polisacáridos/metabolismo , Proteínas Recombinantes de Fusión , Plantones/química , Plantones/efectos de los fármacos , Plantones/enzimología , Plantones/genética , Análisis de Secuencia de ADN , Xilanos/análisis
8.
Nat Commun ; 15(1): 5107, 2024 Jun 14.
Artículo en Inglés | MEDLINE | ID: mdl-38877001

RESUMEN

Inositol hexaphosphate (InsP6) is the major storage form of phosphorus in seeds. Reducing seed InsP6 content is a breeding objective in agriculture, as InsP6 negatively impacts animal nutrition and the environment. Nevertheless, how InsP6 accumulation is regulated remains largely unknown. Here, we identify a clade of receptor-like cytoplasmic kinases (RLCKs), named Inositol Polyphosphate-related Cytoplasmic Kinases 1-6 (IPCK1-IPCK6), deeply involved in InsP6 accumulation. The InsP6 concentration is dramatically reduced in seeds of ipck quadruple (T-4m/C-4m) and quintuple (C-5m) mutants, accompanied with the obviously increase of phosphate (Pi) concentration. The plasma membrane-localized IPCKs recruit IPK1 involved in InsP6 synthesis, and facilitate its binding and activity via phosphorylation of GRF 14-3-3 proteins. IPCKs also recruit IPK2s and PI-PLCs required for InsP4/InsP5 and InsP3 biosynthesis respectively, to form a potential IPCK-GRF-PLC-IPK2-IPK1 complex. Our findings therefore uncover a regulatory mechanism of InsP6 accumulation governed by IPCKs, shedding light on the mechanisms of InsP biosynthesis in eukaryotes.


Asunto(s)
Proteínas 14-3-3 , Proteínas de Arabidopsis , Arabidopsis , Ácido Fítico , Proteínas 14-3-3/metabolismo , Proteínas 14-3-3/genética , Ácido Fítico/metabolismo , Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Fosforilación , Fosfotransferasas (Aceptor de Grupo Alcohol)/metabolismo , Fosfotransferasas (Aceptor de Grupo Alcohol)/genética , Mutación , Membrana Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Fosfatos de Inositol/metabolismo
9.
Cell Res ; 34(4): 281-294, 2024 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-38200278

RESUMEN

Plant survival requires an ability to adapt to differing concentrations of nutrient and toxic soil ions, yet ion sensors and associated signaling pathways are mostly unknown. Aluminum (Al) ions are highly phytotoxic, and cause severe crop yield loss and forest decline on acidic soils which represent ∼30% of land areas worldwide. Here we found an Arabidopsis mutant hypersensitive to Al. The gene encoding a leucine-rich-repeat receptor-like kinase, was named Al Resistance1 (ALR1). Al ions binding to ALR1 cytoplasmic domain recruits BAK1 co-receptor kinase and promotes ALR1-dependent phosphorylation of the NADPH oxidase RbohD, thereby enhancing reactive oxygen species (ROS) generation. ROS in turn oxidatively modify the RAE1 F-box protein to inhibit RAE1-dependent proteolysis of the central regulator STOP1, thus activating organic acid anion secretion to detoxify Al. These findings establish ALR1 as an Al ion receptor that confers resistance through an integrated Al-triggered signaling pathway, providing novel insights into ion-sensing mechanisms in living organisms, and enabling future molecular breeding of acid-soil-tolerant crops and trees, with huge potential for enhancing both global food security and forest restoration.


Asunto(s)
Proteínas de Arabidopsis , Arabidopsis , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Aluminio/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Arabidopsis/genética , Arabidopsis/metabolismo , Iones , Suelo , Regulación de la Expresión Génica de las Plantas , Factores de Transcripción/metabolismo
10.
Mol Plant ; 14(9): 1554-1568, 2021 09 06.
Artículo en Inglés | MEDLINE | ID: mdl-34216828

RESUMEN

Phosphorus (P) is an indispensable macronutrient required for plant growth and development. Natural phosphate (Pi) reserves are finite, and a better understanding of Pi utilization by crops is therefore vital for worldwide food security. Ammonium has long been known to enhance Pi acquisition efficiency in agriculture; however, the molecular mechanisms coordinating Pi nutrition and ammonium remains unclear. Here, we reveal that ammonium is a novel initiator that stimulates the accumulation of a key regulatory protein, STOP1, in the nuclei of Arabidopsis root cells under Pi deficiency. We show that Pi deficiency promotes ammonium uptake mediated by AMT1 transporters and causes rapid acidification of the root surface. Rhizosphere acidification-triggered STOP1 accumulation activates the excretion of organic acids, which help to solubilize Pi from insoluble iron or calcium phosphates. Ammonium uptake by AMT1 transporters is downregulated by a CIPK23 protein kinase whose expression is directly modulated by STOP1 when ammonium reaches toxic levels. Taken together, we have identified a STOP1-centered regulatory network that links external ammonium with efficient Pi acquisition from insoluble phosphate sources. These findings provide a framework for developing possible strategies to improve crop production by enhancing the utilization of non-bioavailable nutrients in soil.


Asunto(s)
Compuestos de Amonio/metabolismo , Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Fosfatos/metabolismo , Factores de Transcripción/metabolismo , Arabidopsis/genética , Arabidopsis/crecimiento & desarrollo , Proteínas de Arabidopsis/genética , Proteínas de Transporte de Catión/genética , Proteínas de Transporte de Catión/metabolismo , Núcleo Celular/metabolismo , Regulación de la Expresión Génica de las Plantas , Hierro/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Proteínas Serina-Treonina Quinasas/genética , Proteínas Serina-Treonina Quinasas/metabolismo , Factores de Transcripción/genética
11.
Yi Chuan Xue Bao ; 33(2): 141-51, 2006 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-16529298

RESUMEN

To investigate the genetic factors underlying constitutive and adaptive root growth under different water-supply conditions, a double haploid (DH) population, derived from a cross between lowland rice variety IR64 and upland rice variety Azucena, with 284 molecular markers was used in cylindrical pot experiments. Several QTLs for seminal root length (SRL), adventitious root number (ARN) and total root dry weight (RW) respectively, under both flooding and upland conditions were detected. Two identical QTLs for SRL and RW were found under flooding and upland conditions. The relative parameters defined as the ratio of parameters under the two water-supply conditions were also used for QTL analysis. A comparative analysis among different genetic populations was performed for the QTLs for root traits and several consistent QTLs for root traits across genetic backgrounds were detected. Candidate genes for cell expansion and elongation were used for comparative mapping with the detected QTLs. Four cell wall-related expressed sequence tags (ESTs) for OsEXP2, OsEXP4, EXT and Xet were mapped on the intervals carrying the QTLs for root traits.


Asunto(s)
Genes de Plantas/genética , Oryza/genética , Raíces de Plantas/genética , Sitios de Carácter Cuantitativo , Adaptación Fisiológica/genética , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Cruzamientos Genéticos , Sequías , Etiquetas de Secuencia Expresada , Inundaciones , Repeticiones de Microsatélite , Oryza/clasificación , Oryza/crecimiento & desarrollo , Raíces de Plantas/crecimiento & desarrollo , Polimorfismo de Longitud del Fragmento de Restricción
12.
J Zhejiang Univ Sci ; 4(4): 469-73, 2003.
Artículo en Inglés | MEDLINE | ID: mdl-12861625

RESUMEN

Understanding the growth and physiological responses of rice to upland conditions would be helpful for designing treatments to improve the tolerance of rice under a rainfed system. The objective of this study was to investigate the initiation,elongation and membrane stability of seminal, lateral and adventitious roots of upland rice after 9-d upland condition treatment. Compared with control roots under waterlogged conditions, upland water deficiency conditions favor seminal and lateral root growth over adventitious root growth by accelerating seminal root elongation, promoting lateral root initiation and elongation, and reducing the elongation and number of adventitious roots. Enhanced total root number and length resulted in increase of total root dry weight and thereby increasing the root-to-shoot ratio. Organic compound leakage from seminal root tips and adventitious roots increased progressively to some extent with upland culture duration, while significant increases in seminal root tips were the consequence of loss of membrane integrity caused by the upland-condition enhanced growth.


Asunto(s)
Adaptación Fisiológica/fisiología , Ambiente , Oryza/crecimiento & desarrollo , Oryza/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Agua/metabolismo , Altitud , China , Oryza/citología , Raíces de Plantas/clasificación , Raíces de Plantas/citología
13.
J Zhejiang Univ Sci ; 5(6): 634-43, 2004 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-15101095

RESUMEN

Aluminum (Al) toxicity is the major factor limiting crop productivity in acid soils. In this study, a recombinant inbreed line (RIL) population derived from a cross between an Al sensitive lowland indica rice variety IR1552 and an Al tolerant upland japonica rice variety Azucena, was used for mapping quantitative trait loci (QTLs) for Al tolerance. Three QTLs for relative root length (RRL) were detected on chromosome 1, 9, 12, respectively, and 1 QTL for root length under Al stress is identical on chromosome 1 after one week and two weeks stress. Comparison of QTLs on chromosome 1 from different studies indicated an identical interval between C86 and RZ801 with gene(s) for Al tolerance. This interval provides an important start point for isolating genes responsible for Al tolerance and understanding the genetic nature of Al tolerance in rice. Four Al induced ESTs located in this interval were screened by reverse Northern analysis and confirmed by Northern analysis. They would be candidate genes for the QTL.


Asunto(s)
Aluminio/farmacología , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Genes de Plantas/genética , Oryza/efectos de los fármacos , Oryza/genética , Sitios de Carácter Cuantitativo/genética , Northern Blotting , Mapeo Cromosómico , Cromosomas de las Plantas/genética , Oryza/crecimiento & desarrollo , Fenotipo , Raíces de Plantas/efectos de los fármacos , Raíces de Plantas/genética , Raíces de Plantas/crecimiento & desarrollo , Plantones/efectos de los fármacos , Plantones/genética , Plantones/crecimiento & desarrollo
14.
Mol Plant ; 5(1): 154-61, 2012 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21914651

RESUMEN

Lateral roots are important to plants for the uptake of nutrients and water. Several members of the Aux/IAA family have been shown to play crucial roles in lateral root development. Here, a member of the rice Aux/IAA family genes, OsIAA11 (LOC_Os03g43400), was isolated from a rice mutant defective in lateral root development. The gain-of-function mutation in OsIAA11 strictly blocks the initiation of lateral root primordia, but it does not affect crown root development. The expression of OsIAA11 is defined in root tips, lateral root caps, steles, and lateral root primordia. The auxin reporter DR5-GUS (ß-glucuronidase) was expressed at lower levels in the mutant than in wild-type, indicating that OsIAA11 is involved in auxin signaling in root caps. The transcript abundance of both OsPIN1b and OsPIN10a was diminished in root tips of the Osiaa11 mutant. Taken together, the results indicate that the gain-of-function mutation in OsIAA11 caused the inhibition of lateral root development in rice.


Asunto(s)
Mutación , Oryza/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Regulación del Desarrollo de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Ácidos Indolacéticos/metabolismo , Oryza/genética , Oryza/crecimiento & desarrollo , Raíces de Plantas/genética , Raíces de Plantas/metabolismo
15.
Mol Plant ; 4(2): 289-99, 2011 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-20978084

RESUMEN

Crown roots are main components of the fibrous root system and important for crops to anchor and absorb water and nutrition. To understand the molecular mechanisms of crown root formation, we isolated a rice mutant defective in crown root emergence designated as Oscand1 (named after the Arabidopsis homologous gene AtCAND1). The defect of visible crown root in the Oscand1 mutant is the result of cessation of the G2/M cell cycle transition in the crown root meristem. Map-based cloning revealed that OsCAND1 is a homolog of Arabidopsis CAND1. During crown root primordium development, the expression of OsCAND1 is confined to the root cap after the establishment of fundamental organization. The transgenic plants harboring DR5::GUS showed that auxin signaling in crown root tip is abnormal in the mutant. Exogenous auxin application can partially rescue the defect of crown root development in Oscand1. Taken together, these data show that OsCAND1 is involved in auxin signaling to maintain the G2/M cell cycle transition in crown root meristem and, consequently, the emergence of crown root. Our findings provide new information about the molecular regulation of the emergence of crown root in rice.


Asunto(s)
Oryza/crecimiento & desarrollo , Oryza/metabolismo , Proteínas de Plantas/metabolismo , Raíces de Plantas/crecimiento & desarrollo , Raíces de Plantas/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Ciclo Celular/genética , Ciclo Celular/fisiología , Regulación de la Expresión Génica de las Plantas/genética , Regulación de la Expresión Génica de las Plantas/fisiología , Meristema/genética , Meristema/crecimiento & desarrollo , Meristema/metabolismo , Oryza/genética , Proteínas de Plantas/genética , Raíces de Plantas/genética , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA